

Linear static	4
Supported bar with concentrated loads.	5
Thermally loaded bar structure	6
Continously supported beam with point loads.	7
External prestressed beam	
Periodically supported infinite membrane wall with constant distributed load.	12
Clamped beam examination with plane stress elements	14
Spatial frame structure from Basaglia et al.(7 DOF frame)	17
Clamped thin square plate	
Plate with fixed support and constant distributed load	
Annular plate.	
All edges simply supported plate with partial distributed load.	
Clamped plate with linear distributed load.	20
Strip loading on a comi infinite electic medium	2020
Circular loading on a semi infinite elastic medium	ວບ ຊາ
Rectangular loading on a semi-infinite elastic medium	
Rigid foundation on linear elastic soil	
Circular foundation on linear elastic soil	
STG module: Simulation of progressive construction stages	40
STG module: Simulation of progressive demolition stages	
STG module: Simulation of progressive modification stages	
Nonlinear static	46
3D heam structure	۲ ۰ ۸7
Plate with fixed and and bending moment	
Plastic material	
Clamped beam with plastic material under cyclic loading	
Clamped beam with symmetric nonlinear material model	55
Clamped beam with asymmetric nonlinear material model	
Clamped beam with only compression material model	
Pushover – 2D frame	62
Pushover – 3D frame	64
Dynamic	67
Deep simply supported beam	68
Clamped thin rhombic plate.	
Cantilevered thin square plate.	
Cantilevered tapered membrane.	
Flat grillages.	
Stability	83
Elastically supported rigid element	84
Stability of node-node link element	85
Simply supported beam (1 st sample)	86
Simply supported beam (2 nd sample)	
Simply supported beam with monosymmetric cross-section (7 DOF beam)	
Simply supported beam with monosymmetric cross-section (7 DOF beam)	
Simply supported beams with variable cross-section (7 DOF beam)	92
Clamped beams with variable cross-section (7 DOF beam)	94
Plate buckling simply supported rectangular plate	
Verification of Euler Buckling shapes (Beam buckling)	
Verification of Euler Buckling shapes (Lateral torsional buckling)	
Verification of Euler Buckling shapes (Plate buckling)	
Design	
N-M interaction curve of cross-section (EN 1992-1-1:2004)	
RC beam deflection according to EC2, EN 1992-1-1:2010.	
RC one-way slab deflection according to EC2, EN 1992-1-1:2010.	
Nonlinear analysis of RC columns according to EC2, EN 1992-1-1:2010.	

AXISVM Verification Examples

Axially loaded RC column check according to EC2, EN 1992-1-1:2010	
Axially loaded RC column check according to EC2, EN 1992-1-1:2010	
Shear and torsion check of RC column according to EC2, EN 1992-1-1:2010.	
Required steel reinforcement of RC plate according to EC2, EN 1992-1-1:2004	
Interaction check of simply supported beam under biaxial bending (EN 1993-1-1)	130
Interaction check of simply supported beam under normal force, bending and shear force	132
Buckling resistance of simply supported beam (EN 1993-1-1).	134
Buckling resistance of simply supported beam (EN 1993-1-1).	
Buckling of a hollow cross-section beam (EN 1993-1-1).	138
Lateral torsional buckling of a beam (EN 1993-1-1).	142
Interaction check of beam in section class 4 (EN 1993-1-1, EN 1993-1-5)	148
Interaction check of class 4 box-section beam (EN 1993-1-1, EN 1993-1-5)	150
Fire design of steel elements – Unprotected column under axial compression (EN 1993-1-2)	152
Fire design of steel elements – Unrestrained beam (EN 1993-1-2)	153
Fire design of steel elements – Unrestrained beam-column (EN 1993-1-2)	154
Fire design of steel elements – Beam-column with restrained lateral displacements (EN 1993-1-2)	156
Fire design of timber elements – Unprotected beam (EN 1995-1-2)	157
Fire design of timber elements – Unprotected column (EN 1995-1-2)	158
Fire design of timber elements – Protected column (EN 1995-1-2)	
Earth-quake design using response-spectrum method.	
Appendix A	
Clamped beam with symmetrical nonlinear material model – Theoretical background	169
Clamped beam with asymmetrical nonlinear material model – Theoretical background	170
Clamped beam with only compression nonlinear material model – Theoretical background	172

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: beam1.axs

Thema	Supported bar with concentrated loads.					
Analysis Type	Linear analysis.					
Geometry						
	$P_{1} \qquad \qquad P_{2} \qquad \qquad P_{2} \qquad \qquad P_{2} \qquad \qquad P_{3} \qquad \qquad P_{3$					
Loads	Axial direction forces $P_1 = -200 \text{ kN}$, $P_2 = 100 \text{ kN}$, $P_3 = -40 \text{ kN}$					
Boundary Conditions	Fix ends, at R_1 and R_5 .					
Material Properties	$E = 20000 \text{ kN} / \text{cm}^2$ v = 0.3					
Element types	Beam element					
Mesh	5 ¥					
	4					
	3					
	2					
	1					
Target	R1, R5 support forces					
Results						
	Theory AxisVM %					
	R ₁ [kN] -22,00 -22,00 0,00					
	R ₅ [kN] 118,00 118,00 0,00					

5

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: beam2.axs

Thema	Thermally loaded bar structure.					
Analysis	Linear analysis.					
Туре						
Geometry	1,0 m 1,0 m					
	Ý Ý Ý∱-					
	a a L=2,0 m					
	S 70 S					
	7					
	$E \cdot I = \infty$					
	Side view					
	Suce view					
	Sections. Check $A = \pi \times 40.4 \text{ m}^2 \text{ (D. 2cm)}$					
	Steel: As = $\pi \times 10^{-1} \text{ m}^2 \text{ (D=2cm)}$					
	Copper: $A_c = \pi \times 10^{-4} \text{ m}^2 \text{ (D=2cm)}$					
Loads	P = -12 km (Point 1080) Temperature rise of 10 °C in the structure ofter eccembly					
Doundors	The upper and of here are fixed					
Conditions	Nodal DOE: Frame X-7 plane					
Material						
Properties	Steel: $E_s = 20700 \text{ kN} / \text{cm}^2$, $v = 0,3$, $\alpha_s = 1,2 \times 10^{-5} \text{ °C}^{-1}$					
rioportioo	Copper: E_c = 11040 kN / cm² , v = 0,3 , α_c = 1,7 x 10 ⁻⁵ °C ⁻¹					
Element	Beam element					
types						
Target	S _{max} in the three bars.					
Results						
	Theory AxisVM %					
	Steel S _{max} [MPa] 23,824 23,848 0,10					
	Cooper S _{max} [MPa] 7,185 7,199 0,19					

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: beam3.axs

7

AXISVM Verification Examples

AXISVM Verification Examples

Results		Reference	AxisVM	e [%]
	V _A [KN]	0.00	0.09	0.00
	V _B [KN]	112.10	113.09	0.88
	V _C [KN]	646.80	647.15	0.05
	V _D [KN]	335.00	334.86	-0.04
	V _E [KN]	267.80	267.48	-0.12
	V_[KN]	0.00	-0.05	0.00
	VELICIN	0.00		
	VELICI	Reference	AxisVM	e [%]
	R _A [KN/m ²]	Reference 145.7	AxisVM 154.0	e [%] 5.70
	$\frac{R_{A}[KN/m^{2}]}{R_{B}[KN/m^{2}]}$	Reference 145.7 219.5	AxisVM 154.0 219.5	e [%] 5.70 0.00
	$\frac{R_{A}[KN/m^{2}]}{R_{B}[KN/m^{2}]}$ $R_{C}[KN/m^{2}]$	Reference 145.7 219.5 343.8	AxisVM 154.0 219.5 346.0	e [%] 5.70 0.00 0.64
	$R_{A}[KN/m^{2}]$ $R_{B}[KN/m^{2}]$ $R_{C}[KN/m^{2}]$ $R_{D}[KN/m^{2}]$	Reference 145.7 219.5 343.8 386.9	AxisVM 154.0 219.5 346.0 387.8	e [%] 5.70 0.00 0.64 0.23
	$R_{A}[KN/m^{2}]$ $R_{B}[KN/m^{2}]$ $R_{C}[KN/m^{2}]$ $R_{D}[KN/m^{2}]$ $R_{E}[KN/m^{2}]$	Reference 145.7 219.5 343.8 386.9 224.5	AxisVM 154.0 219.5 346.0 387.8 224.7	e [%] 5.70 0.00 0.64 0.23 0.09

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: beam4.axs

Thema	External prestressed beam.
Analysis Type	Linear analysis.
Geometry	
	p=-50 kN/m
	2,0 m 4,0 m 2,0 m
	Side view
Loads	p = -50 kN /m distributed load Length change = -6,52E-3 at beam 5-6
Boundary Conditions	eY = eZ = = 0 at node 1 eX = eY = eZ = 0 at node 4
Material Properties	$ \begin{array}{l} E = 2,1E11\ N\ /\ m^2 \\ Beam\ 1\text{-}5,\ 5\text{-}6,\ 6\text{-}4\ A = 4,5E\text{-}3\ m^2\ I_z \!\!= 0,\!2E\text{-}5\ m^4 \\ Truss\ 2\text{-}5,\ 3\text{-}6\ A = 3,\!48E\text{-}3\ m^2\ I_z \!\!= 0,\!2E\text{-}5\ m^4 \\ Beam\ 1\text{-}4\ A = 1,\!516E\text{-}2\ m^2\ I_z \!\!= 2,\!174E\text{-}4\ m^4 \end{array} $
Mesh	Beam 1-4: division into N segment: N = 12
Element types	Rib element: Three node beam element, 1-5, 5-6, 6-4, 1-4 (shear deformation is taken into account) Truss element 2-5, 3-6
Target	N _x at beam 1-4 M _{y,max} at beam 2-3 e _z at node 2

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: plane1.axs

Thema	Periodically supported infinite membrane wall with constant distributed load.
Analysis Type	Linear analysis.
Geometry	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Loads	p = 200 kN / m
Boundary Conditions	vertical support at every 4,0 m support length is 0,4 m (Rz = 1E+3) Symmetry edges – Nodal DOF: (C C f C C C)
Material Properties	$E = 880 \text{ kN} / \text{cm}^2$ v = 0,16
Element types	Parabolic quadrilateral membrane (plane stress)
Mesh	
Target	S _{xx} at 1-10 nodes (1-5 at middle, 6-10 at support)

Results

Node	Analytical [kN/cm ²]	AxisVM [kN/cm ²]	%
1	0,1313	0,1310	-0,23
2	0,0399	0,0395	-1,00
3	-0,0093	-0,0095	2,15
4	-0,0412	-0,0413	0,24
5	-0,1073	-0,1070	-0,28
6	-0,9317	-0,9166	-1,62
7	0,0401	0,0426	6,23
8	0,0465	0,0469	0,86
9	0,0538	0,0537	-0,19
10	0,1249	0,1245	-0,32

Reference:

Dr. Bölcskey Elemér – Dr. Orosz Árpád: Vasbeton szerkezetek Faltartók, Lemezek, Tárolók

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: plane2.axs

Thema	Clamped beam examination with plane stress elements.
Analysis Type	Linear analysis.
Geometry	p=-25 kN/m
	0,375 m 5,625 m
	€ 6,0 m
	Side view
Loads	p = -25 kN/m
Boundary Conditions	Both ends built-in. Line support component stiffness: 1E+10. Symmetry edge – Nodal DOF: (C C f C C C)
Material Properties	$E = 880 \text{ kN} / \text{cm}^2$ v = 0
Element types	Parabolic quadrilateral membrane (plane stress)
Mesh	Clamped Clamped C decge C d
	side view

AXISVM Verification Examples

V = 65,625 kN (from beam theory) $S'_{y} = 0,0078125 m^{3}$ b=0,25 m $I_y = 0,00260416 m^4$ $\tau_{xy} = \frac{V \cdot S_y}{b \cdot I_y} = \frac{65,625 \cdot 0,0078125}{0,25 \cdot 0,00260416} = 787,5 \ kN/m^2$ AxisVM result τ_{xy} = 786,77 kN / m² Difference = -0,10 % AxisVM result $V = \sum n_{xy} = 65,63 \ kN$ Difference = 0,008 %

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: basaglia.axs

Thema	Spatial frame structure from Basaglia et al.(7 DOF frame)
Analysis Type	Linear analysis.
Geometry	
	Joint P P P P P P P P P P P P P
	Spatial frame loading and support conditions (Basaglia et al. 2012)
Loads	P = 1 kN
Boundary Conditions	Column bases are fixed (i), the column-to-beam joints cannot move along X and Z (ii), and the displacement along X of the transverse beam midspan cross-section is also prevented (iii). Three types of warping continuity are analyzed at the joints, like: box-stiffened, diagonal-stiffened, diagonal/box-stiffened.
Material	$E = 21000 \text{ kN} / \text{cm}^2$
Properties	
Element	14 DOF warping beam element.
Target	Bimoments at joints.
Results	Image: State of the state

Cross	Basaglia et al. [kNcm ²]			AxisVM [kNcm ²]			Δ [%]		
section	Rigid	Inverse	Direct	Rigid	Inverse	Direct	Rigid	Inverse	Direct
AC	0	1.03	-1.03	0	1.03	-1.03	0	0	0
BC	0	-3.07	3.07	0	-3.02	3.02	0	1.6	1.6
BB	6.14	3.07	3.07	6.05	3.02	3.02	1.5	1.6	1.6
CB	-6.14	-5.11	-5.11	-6.05	-5.02	-5.02	1.6	1.8	1.8

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: plate1.axs

Thema	Clamped thin square plate.
Analysis	Linear analysis.
Geometry	
	4 к
	A,0 m A,0 m
	Top view
	(thickness = 5,0 cm)
Loads	P = -10 kN (at the middle of the plate)
Boundary	aY = aY = aZ = fiY = fiZ = 0 along all address
Conditions	Nodal DOF: Plate in X-Y plane
Material	$E = 20000 \text{ kN} / \text{cm}^2$
Element	v = 0.3 Plate element (Parabolic guadrilateral, heterosis type)
types	
Mesh	
	· • • • • • • • •
	4,000
	$\overset{r}{\sqsubseteq}_{\mathbf{x}}$
Target	Displacement of middle of the plate

20

Convergency

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: plate2.axs

Thema	Plate with fixed support and const	tant distributed load	l.	
Analysis Type	Linear analysis.			
Geometry	P=5,0 kNm ²	p=-5,0 kN/m ²	8,0 m	
		(thickness = 15.0 $($	cm)	
Loads	$P = -5 \text{ kN} / \text{m}^2$		511)	
Boundary	eX = eY = eZ = fiX = fiY = fiZ = 0	along all edges		
Conditions	Nodal DOF: Plate in X-Y plane $E = 990 \text{ kN/cm}^2$			
Properties	v = 0.16			
Element types	Parabolic triangle plate element			
Mesh		8 m		
Target	Maximal eZ (found at Node1) and	maximal m _x (found	l at Node2)	
Results			A	0/
	Component	Nastran®	AXISVM	%
	e∠,max [mm]	-1,613	-1,595	-1,12
	mx,max [kNm/m]	3,060	3,060	0,00

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: plate3.axs

Thema	Annular plate.
Analysis Type	Linear analysis.
Geometry	
	(thickness = 22,0 cm)
Loads	Edge load: $Q = 100 \text{ kN} / \text{m}$
Boundary Conditions	Distributed load: q = 100 kN / m² Nodal DOF: Plate in X-Y plane (a) (b) (c) (c)
Properties	v = 0.3
Element types	Plate element (parabolic quadrilateral, heterosis type)

AXISVM Verification Examples

Mesh				4A		
				1.1.		
				THE .		
				THE .		
				HH.		
				HH.		
		/	THTAX			
		- · · · · /	THHAA			
				Í .		
		∢` _	2.000	1.000		
			+ 4,000	· · · ×		
T (0	x				
Target	Smax, emax					
Results						
			Theory	AxisVM		
		Model	S _{max}	S _{max}	%	
			[kN/cm ²]	[kN/cm ²]		
		a.)	2,82	2,82	0,00	
		b.)	6,88	6,85	-0,44	
		<u> </u>	14,22	14,29	0,49	
		d.)	1,33	1,33	0,00	
		e.)	2,35	2,25	-4,26	
		<u> </u>	9,88	9,87	-0,10	
		<u> </u>	4,79	4,70	-0,21	
		· · · · <i>)</i>	7,00	7,05	-0,13	
			Theory	AxisVM		
		Model	emax	emax	%	
			[mm]	[mm]		
		a.)	77,68	76,82	-1,11	
		b.)	226,76	223,27	-1,54	
		c.)	355,17	355,37	0,06	
		d.)	23,28	23,36	0,34	
		e.)	44,26	44,56	0,68	
		f.)	123,19	123,38	0,15	
		g.)	112,14	112,93	0,70	
		h.)	126,83	126,95	0,09	
	Poforonco:					
	S. Timoshenko a	nd S. Woinows	ky-Krieaer: Th	neory of Plate	s And She	ells
			,	. ,		

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: plate4.axs

Thema	All edges simply supported plate with partial distributed load.
Analysis Type	Linear analysis.
Geometry	
	Image: state of the state o
	(thickness = 22,0 cm)
Loads	Distributed load: q = -10 kN / m ² (middle of the plate at 2,0 x 2,0 m area)
Boundary	a.) $eX = eY = eZ = 0$ along all edges (soft support)
Conditions	b.) $eX = eY = eZ = 0$ along all edges $\varphi = 0$ perpendicular the edges (hard support) Nodal DOF: Plate in X-Y plane
Material	$E = 880 \text{ kN} / \text{cm}^2$
Properties	v = 0,3
Element types	Plate element (Heterosis type)
Mesh	
	× 5000

Results	a.)				
		Moment	Theory	AxisVM	%
		m _{x, max} [kNm/m]	7,24	7,34	1,38
		m _{y, max} [kNm/m]	5,32	5,39	1,32
	b.)				
	l r	Moment	Theory	AxisVM	%
	ŀF	Moment m _{x, max} [kNm/m]	Theory 7,24	AxisVM 7,28	% 0,55

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: plate5.axs

Thema	Clamped plate with linear distributed load.
Analysis	Linear analysis.
Туре	
Geometry	Top view
	(thickness = 22,0 cm)
Loads	Distributed load: $q = -10 \text{ kN} / \text{m}^2$
Boundary Conditions	eX = eY = eZ = fiX = fiY= fiZ = 0 along all edges Nodal DOF: Plate in X-Y plane
Material Properties	$E = 880 \text{ kN} / \text{cm}^2$ v = 0,3
Element types	Plate element (Heterosis type)
Mesh	

Target	m _x , m	ly			
Results					
		Results	Theory	AxisVM	%
		m _{x,1} [kNm/m]	11,50	11,48	-0,17
		m _{y,1} [kNm/m]	11,50	11,48	-0,17
		m _{x,2} [kNm/m]	33,40	33,23	-0,51
		m _{x,3} [kNm/m]	17,90	17,83	-0,39
		m _{v,4} [kNm/m]	25,70	25,53	-0,66
	R S.	eference: . Timoshenko and S. Woino	wsky-Krieger: Theo	ry of Plates And Sh	ells

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: hemisphere.axs

Boundary Conditions	eX = eY = eZ = fiX = fiY = fiZ = 0 at C Symmetry in X-Z plane on A-C edge Symmetry in Y-Z plane on B-C edge			
Material Properties	$E = 6825 \text{ kN} / \text{cm}^2$ v = 0,3			
Element types	Shell element 1.) guadrilateral parabolic 2.) triangle parabolic			
Target	e _x at point A			
Results				
		e _x [m]	e[%]	
	Theory	0.185		
	AxisVM quadrilateral	0.185	0.00	
	AxisVM triangle	0.182	-1.62	

Software Release Number: X7r2a Date: 26. 05. 2023. Tested by: InterCAD File name: soil1.axs

Thema	Strip loading on a semi-infinite elastic medium
Analysis Type	Linear analysis.
Geometry	
Loads	Distributed load (P) = 1 MPa Load width (b) = 2 m
Boundary Conditions	eX = 0 at two sides eY = 0 at two sides eX = eY = eZ = 0 at the bottom
Material Properties	Compression modulus (Es) = 20000 MPa Poisson's ratio (v) = 0.2
Element types	A mesh of 10200 hexahedron elements was used.
Target	Szz soil stress is selected for comparison.

Software Release Number: X7r2a Date: 26. 05. 2023. Tested by: InterCAD File name: soil2.axs

Thema	Circular loading on a semi-infinite elastic medium
Analysis Type	Linear analysis.
Geometry	
Loads	PZ=-100 kN/m ² distributed load in the center distributed on a circular area (R=1m).
Boundary Conditions	eX = 0 at two sides eY = 0 at two sides eX = eY = eZ = 0 at the bottom
Material Properties	Compression modulus (Es) = 30 MPa Poisson's ratio (v) = 0.2
Element types	A mesh of 30008 wedge elements with average size of 0.5 m was used.
Target	Szz soil stress is selected for comparison.

Software Release Number: X7r2a Date: 26. 05. 2023. Tested by: InterCAD File name: soil3.axs

Thema	Rectangular loading on a semi-infinite elastic medium
Analysis Type	Linear analysis.
Geometry	
Loads	PZ=-150 kN/m ² distributed load.
Boundary Conditions	eX = 0 at two sides eY = 0 at two sides eX = eY = eZ = 0 at the bottom
Material Properties	Compression modulus (Es) = 30 MPa Poisson's ratio (v) = 0.1
Element types	A mesh of 22714 hexahedron elements with average size of 0.5 m was used.
Target	Szz soil stress below the corner is selected for comparison.

Software Release Number: X7r2a Date: 26. 05. 2023. Tested by: InterCAD File name: soil4.axs

Software Release Number: X7r2a Date: 26. 05. 2023. Tested by: InterCAD File name: soil5.axs

Thema	Circular foundation on linear elastic soil
Analysis Type	Linear analysis.
Geometry	
Loads	PZ=-263.3 kN/m ² distributed load.
Boundary Conditions	eX = 0 at two sides eY = 0 at two sides eX = eY = eZ = 0 at the bottom
Material Properties	Young's modulus (E) = 95.8 MPa Poisson's ratio (v) = 0.499
Element types	A mesh of 183570 tetrahedron elements with average size of 4 m was used.
Target	Maximum settlement.

Software Release Number: X8r1 Software Release Number: X8r1 Date: 24. 03. 2024. Tested by: InterCAD File name: construction.axs

Element types	Beam for C111-C222; Rib for B11-B24; Shell for S1-S3									
Target	RP of (RP1 of C111: R_{yy} in STG4; RP2 of B13: M_y in STG4; RP3 of SP1: e_z and my in STG4; RP4 of C222: e_x and N_x in STG4								
Results	sults Stage: STG4									
		Reference point	Parameter	AXSIVM	ABAQUS	Deviation				
		RP1 - C111	R _{yy} (kNm)	33.22	33.04	0.56%				
		RP2 - B13	M _y (kNm)	-67.36	-67.32	0.05%				
		DD2 CD1	e₂ (mm)	-13.88	-13.56	2.29%				
		KP2 - 3P1	m _y (Nmm/mm)	-70429.70	-69603.00	1.17%				
			e _x (mm)	25.18	25.01	0.68%				
		NF4 - CZZZ	N _x (kN)	-376.73	-376.77	-0.01%				

Software Release Number: X8r1 Software Release Number: X8r1 Date: 24. 03. 2024. Tested by: InterCAD File name: demolition.axs

Element types	Beam for C111-C222; Rib for B11-B24; Shell for S1-S3								
Target	RP of (RP1 of C111: R_{yy} in STG4; RP2 of B13: M_y in STG4; RP3 of SP1: e_z and my in STG4; RP4 of C222: e_x and N_x in STG4							
Results	ts Stage: STG4								
		Reference point	Parameter	AXSIVM	ABAQUS	Deviation			
		RP1 - C111	R _{yy} (kNm)	5.64	5.47	3.07%			
		RP2 - B13	M _y (kNm)	-71.20	-72.38	-1.66%			
		DD2 CD1	e₂ (mm)	-13.39	-13.08	2.29%			
		KP2 - 3P1	m _y (Nmm/mm)	-70941.06	-69864.00	1.52%			
			e _x (mm)	14.52	14.26	1.80%			
		NF4 - CZZZ	N _x (kN)	11.81	11.74	0.58%			

Software Release Number: X8r1 Software Release Number: X8r1 Date: 24. 03. 2024. Tested by: InterCAD File name: modification.axs

	HEB160: $A_x = 5232,00 \text{ mm}^2$; $I_x = 251289,2 \text{ mm}^4$; $I_y = 2,4136\text{E+7} \text{ mm}^4$; $I_z = 8880384,0 \text{ mm}^4$ for C111 in STG3-STG4 IPE400: $A_x = 8067,80 \text{ mm}^2$; $I_x = 368263,3 \text{ mm}^4$; $I_z = 2,1876\text{E+8} \text{ mm}^4$; $I_z = 1,3142\text{E+7} \text{ mm}^4$ for							
	B11-B24 in STG1-STG4							
Element types	Beam for C111-C222; Rib for B11-B24; Shell for S1-S3							
Target	RP1 of C111: R_{yy} and N_x in STG4; RP2 of B13: M_y in STG4; RP3 of SP1: e_z and my in STG4; RP4 of C222: e_x and N_x in STG4							
Results	Deference reint Deremeter			Stage: STG4				
		Reference point	Parameter	AXSIVM	ABAQUS	Deviation		
		DD1 C111	R _{yy} (kNm)	0.00	0.00	0.00%		
		RPI-CIII	N _x (kN)	-658.25	-657.07	0.18%		
		RP2 - B13	M _y (kNm)	-57.58	-58.88	-2.27%		
			e₂ (mm)	-14.38	-14.14	1.69%		
		KP2 - 3P1	m _y (Nmm/mm)	-69521.58	-68628.10	1.29%		
			e _x (mm)	5.84	5.57	4.48%		
		RP4 - C222	N _x (kN)	-365.98	-365.53	0.12%		

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: nonlin1.axs

Thema	3D beam structure.
Analysis Type	Geometrical nonlinear analysis.
Geometry	F _y = 300.00 kN F _y = -600,00 kN Node1 Beam1 F _z = -600,00 kN F _z = -600,00 kN
Loads	Py = -300 kN Pz = -600 kN
Boundary Conditions	eX = eY = eZ = 0 at A, B, C and D
Material Properties	S 275 E = 21000 kN / cm ² v = 0,3
Cross- Section Properties	HEA 300 Ax = 112.56 cm ² ; $Ix = 85.3 \text{ cm}^4$; $Iy = 18268.0 \text{ cm}^4$; $Iz = 6309.6 \text{ cm}^4$
Element types	Beam
Target	eX, eY, eZ, at Node1 Nx, Vy, Vz, Tx, My, Mz of Beam1 at Node1

Component	Nastran [®]	AxisVM	%
eX [mm]	17,898	17,881	-0,09
eY [mm]	-75,702	-75,663	-0,05
eZ [mm]	-42,623	-42,597	-0,06
Nx [kN]	-283,15	-283,25	0,04
Vy [kN]	-28,09	-28,10	0,04
Vx [kN]	-106,57	-106,48	-0,08
Tx [kNm]	-4,57	-4,57	0,00
My [kNm]	-519,00	-518,74	-0,05
Mz [kNm]	148,94	148,91	-0,02

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: nonlin2.axs

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: Plastic_1.axs

Thema	Plastic material
Analysis Type	Nonlinear static analysis
Geometry	
	Cross-section: D = 30mm
Loads	Axial force at A: N Solution control: Displacement at A
Boundary Conditions	eX = eY = eZ = 0 at B, C and D
Material Properties	S 235 E = 21000 kN / cm ² v = 0,3 Linear elastic – perfectly plastic material model
Element types	Truss element
Target	Check the load – vertical displacement (A) curve
Results	$\begin{array}{c} 40000 & 4 \times 10^{5} \\ 40000 & 3 \times 10^{5} \\ Axis_{i,1} & 2 \times 10^{5} \\ F(u) & 1 \times 10^{5} \\ 0 & 0 \\ 0 & 0 \\ 0 & 5 \\ 0 & Axis_{i,0}, u \\ \end{array}$

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: Plastic_2.axs

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: matnl_01_xx (*xx* – *element type*)

Thema	Clamped beam with symmetric nonlinear material model
Analysis Type	Nonlinear static analysis
Geometry	$Fz \qquad Fz \qquad 0 \text{ cm}$
Loads	Fz = 200 kN Solution control: Force Increment function: Equal increments
Boundary Conditions	eX = eY = eZ = fiX = fiY = fiZ = 0 at A
Material Properties	Steel – Strain energy based (<i>NLE</i>) $\sigma[kN/cm^2]$ Steel – Von Mises (<i>VM</i>)
	Material model function: $\sigma = 400 \cdot \sqrt{\epsilon}$ Discrete function assignment per $\epsilon = 0.001$ [] $\nu = 0,3$
Element types / File	Beam/Rib element matnl_01_beam-rib_NLE.axs, matnl_01_beam-rib_VM.axs
name	Plate element matnl_01_plate_NLE.axs, matnl_01_plate_VM.axs (heterosis type)
	Membrane element matnl_01_membrane_NLE.axs, matnl_01_membrane_VM.axs
Target	Check vertical displacements (B) and stresses (A)

Results	Analytical	background: Appen	di>	κA;				
		Yield criterion Strai		Strain energy based			Von Mis	ses
		Type of element		e _B [mm]	[%]		e _B [mm]	[%]
		Analytical		156,4		1	156,4	
		Beam		157,99	1,02	1	157,99	1,02
		Rib		158,48	1,33		158,48	1,33
		Plate TRIA		158,98	1,65		157,96	1,00
		Membrane TRIA		158,34	1,24		158,41	1,29
		Yield criterion		Strain ene based	ergy		Von Mis	es
		Type of element		σ _A [kN/cm²]	[%]		σ_A [kN/cm ²]	[%]
		Analytical		50			50	
		Beam		49,9	-0,20		48,9	-2,20
		Rib		49,9	-0,20		48,9	-2,20
		Plate TRIA		49,79	-0,42		49,83	-0,34
		Membrane TRIA		49,87	-0,26		48,24	-3,52

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: matnl_02_xx (xx – element type)

Thema	Clamped beam with asymmetric nonlinear material model
Analysis Type	Nonlinear static analysis
Geometry	F_z
Loads	Fz = 1200 N; Solution control: Force Increment function: Equal increments
Boundary Conditions	eX = eY = eZ = fiX = fiY = fiZ = 0 at A
Material Properties	Strain energy based (<i>NLE</i>) $E = 28600 \text{ N/mm}^2; E_T = 0 \text{ N/mm}^2;$ $\sigma_{yT} = 1,6 \text{ N/mm}^2; \sigma_{yC} = 16 \text{ N/mm}^2;$ v = 0; v = 0; $\sigma[\text{N/mm}^2]$ -5,5944E-4 5,5944E-5 c[] -16,00
Element types / File	Beam/Rib element matnl_02_beam-rib_NLE.axs
name	Shell element matnl_02_shell_NLE.axs (heterosis type)
Target	Check vertical displacements (B) and stresses (C), length of plastic zone (x)

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: matnl_03_xx (xx – element type)

Thema	Clamped beam with only compression material model
Analysis Type	Nonlinear static analysis
Geometry	F_z
Loads	Fz =200 N; N = 5000 N Solution control: Force Increment function: Equal increments
Boundary Conditions	eX = eY = eZ = fiX = fiY = fiZ = 0 at A
Material Properties	Concrete – Bresler-Pister (BP)Other – Strain energy based (NLE) $E = 28600 \text{ N/mm}^2$; $E_T = 0 \text{ N/mm}^2$; $\sigma_{VT} = 0,016 \text{ N/mm}^2$; $\sigma_{VC} = 16 \text{ N/mm}^2$; $G_{VP} = 1.2 \text{ (Bresler-Pister)}$:
	v = 0; -16,000
Element	Beam/Rib element matnl_03_beam-rib_NLE.axs, matnl_03_beam-rib_BP.axs
name	Shell elementmatnl_03_shell_NLE.axs, matnl_03_shell_BP.axs(heterosis type)
Target	Check vertical displacements (B) and stresses (C), length of plastic zone (x)

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: push_2D_RC_frame.axs

Thema	Pushover – 2D fran	ne								
Analysis Type	Nonlinear static analysis									
Geometry	three bays with 6m width and 4m height									
		-50.00	-50.00	-50.00	*					
		00			89					
		-50.00	-50.00	-50.00	38					
		× 3060	× 30800 ×							
		8 200 200 200 200 200 200 200 200 200 20	-50.00	-50.00	60.60					
		× 30#50	× 30460 ×	X 30 % 50	-*					
		900-600 199-199	99 09	-	800-68					
		-50.00	-50.00	-50.00	_					
		<u>ଥି</u> - ଅନ୍ୟ	Ę		99					
					8					
		- +	¥ -	Ť	4					
Loads	50 kN/m distributed	load on the beam	IS							
Boundary	rigid supports	4 h a mun u ith th a m								
Material	C25/30 concrete	t be run with the h	umber of increm	ents set to 70						
Elements	Beam elements: be	am section: 30x60) cm rectangular;	; column secti	on: 60x60 cm square					
	Plastic hinges at be	am ends:								
	moment res	sistance: 360 kNm	initially. then 72	kNm						
	no hardenir	ng, sudden loss of	strength							
	 infinite rota 	tion capacity								
		M(kNm)	Pushover hinge function 360.00		1					
				72.00						
			0		\$(rad]					
		-72.00								
			-360.00							

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: push_3D_RC_frame.axs

Thema	Pushover – 3D frame						
Analysis Type	Nonlinear static analysis						
Geometry	two bays in x (6m and 5m) and three bays in y (5m, 6m and 4m) direction $\int \int \partial f df d$						
Loads	25 kN/m distributed load on the beams						
Boundary Conditions	rigid supports						
Material	C25/30 concrete						
Properties Elements	Beam elements: beam section: 30x60 cm rectangular: column section: 60x60 cm square						
	 Plastic hinges at beam ends: moment resistance: 360 kNm initially, then 72 kNm no hardening, sudden loss of strength infinite rotation capacity 						
	Pushover hinge function						
	Mexima 380.00 						

BLANK

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: dynam1.axs

Results	Comparisor	n with NAFE	MS example		
		Mode	NAFEMS (Hz)	AxisVM (Hz)	%
		1	42,65	43,16	-1,20
		2	42,65	43,16	-1,20
		3	125,00	124,01	0,79
		4	148,31	152,50	-2,83
		5	148,31	152,50	-2,83
		6	284,55	293,55	-3,16
		7	284,55	293,55	-3,16

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: dynam2.axs

Thema	Clamped thin rhombic plate.				
Analysis Type	Vibration analysis.				
Geometry	$\int_{10,0 \text{ m}} \int_{10,0 \text{ m}} \int_{1$				
Loads	Self-weight				
Boundary Conditions	eX = eY = fiZ = 0 at all nodes (i.e.: eX , eY , fiZ constrained at all nodes; Nodal DOF: Plate in X-Y plane) eZ = fiX = fiY = 0 along the 4 edges (Line support)				
Material Properties					
Element types	Parabolic quadrilateral shell element (heterosis type)				
Mesh					

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: dynam3.axs

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: dynam4.axs

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: dynam5.axs

Mode	Reference	AxisVM (Hz)	%
1	16,85	16,90	0,30
2	20,21	20,64	2,13
3	53,30	51,76	-2,89
rence:			
. ROSS:	Finite Element M	lethods In Engine	ering Scie
	Mode 1 2 3 rence:	Mode Reference 1 16,85 2 20,21 3 53,30 F. ROSS: Finite Element M	Mode Reference AxisVM (Hz) 1 16,85 16,90 2 20,21 20,64 3 53,30 51,76

BLANK

Software Release Number: X8r1a Date: 23. 08. 2024. Tested by: InterCAD

File name:	buckling_	_rigid1.axs

Thema	Elastically supported rigid element.
Analysis Type	Buckling analysis.
Geometry	
	h 000.4
Loads	Schematic diagram AxisVM model Load at the top of the model, 1 kN.
Boundary Conditions	k _φ =100kNm/rad.
Element types	Rigid element with support springs.
Target	F _{cr} = ?
Results	Buckling analysis Code Eurocode Case : ST1 Mode : 1 o _{cr} : 25.000 Error : 6.76E-20 Iterations : 3 Comp. : eX
	AXISVM result: $F_{cr} = 25$ kN. Analytical solution: $F_{cr} = \frac{k_{\phi}}{25} = 25$ kN.
	Difference: 0%.

Software Release Number: X8r1a Date: 23. 08. 2024.

Tested by: InterCAD File name: buckling_rigid2.axs

Thema	Stability of node-node link element.
Analysis Type	Buckling analysis.
Geometry	h/2 h/2 h/2 h/2 Schematic diagram AxisVM model
Loads	Load at the top of the model, 1 kN.
Boundary Conditions	k_{ϕ} =100kNm/rad.
Element types	Rigid element with support springs.
Target	$F_{cr} = ?$
Results	Buckling analysis Code Eurocode Case 511 q_{cr} 510000 Error 5.00E-9 Iterations 2 Comp. eY AxisVM result: $F_{cr} = 100 \text{ kN}.$ Analytical solution: $F_{cr} = \frac{4k\phi}{2} = 100 \text{ kN}.$
	Difference: 0%.

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: buckling1.axs

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: buckling2.axs

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: buckling3.axs

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: buckling4.axs

Thema	Simply supported beam with monosymmetric cross-section (7 DOF beam)
Analysis Type	Buckling analysis.
Geometry	Reported to the second

Software Release Number: X8r1a Date: 27. 06. 2024. Tested by: InterCAD

File names: variable_simplysupported_7dof.axs, variable_simplysupported_shell.axs Thema Simply supported beams with variable cross-section (7 DOF beam) Buckling analysis. Analysis Type Andrade, Camotim (2005). "Lateral-Torsional Buckling of Singly Symmetric Geometry Tapered Beams: Theory and Applications." Journal of Engineering Mechanics ASCE: E=200 GPa G=77.2 GPa l=6096 mm b=152.4 mm αh_{max} $t_f = 12.7 \, mm$ $h_{max} = 609.6 \, mm$ $t_w = 9.5 mm$ ŧ₽ l/2l/2 $\alpha \in [0.3, 1.0]$ $z_Q = 0$ or $-h_{max}/2$ Axonometric view of beam elements with eccentric load D p) M 1 \mathbf{N} Axonometric view of shell elements with eccentric load C P **R K** 1 F

Loads	Eccentric load at midspan				
	F = 1,0 kN				
Boundary	$eY = eZ = \phi X = 0$ at A				
Conditions	$eX = eY = eZ = \phi X = 0$ at B				
Material	$E = 21000 \text{ kN} / \text{cm}^2$				
Properties	v = 0,0				
Element	14 DOF warping beam element				
types					
Target	$F_{cr} = ?$ (for lateral torsional buckling)				
Results	150				
	130				
	μ ⁵ 90				
	70				
	50 0.2 0.4 0.5 0.6 0.7 0.8 0.0 1				
	0,3 0,4 0,5 0,6 0,7 0,8 0,9 1				
	α[-]				
	Loaded at the top, 7DoF, X8 Loaded at the centre, 7DoF, X8				
	– – Loaded at the top, 7DoF, X7 – – – Loaded at the centre, 7DoF, X7				
	• • • • Loaded at the top, shell				

Software Release Number: X8r1a Date: 27. 06. 2024.

Tested by: InterCAD

Loads	Eccentric load at midspan				
Boundary Conditions	$eX = eY = eZ = \phi X = \phi Y = \phi Z = w = 0 \text{ at } A$ $eX = eY = eZ = \phi X = \phi Y = \phi Z = w = 0 \text{ at } B$ $E = 21000 \text{ kN/cm}^2$				
Properties	v = 0.0				
Element types	14 DOF warping beam element				
Target	$F_{cr} = ?$ (for lateral torsional buckling)				
Results	60 55 50 45 40 35 30 25 20 15 10 3,5,5,4,4,5,5,5,5,6 Length [m]				
	— — — 7DoF, X7 — — 7DoF, X8 ● ● ● ● Shell				

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: Platebuckling_aperb2.axs

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: Buckling_beam_7dof_v0.axs; Buckling_beam_shell_v0.axs

Material	E=21000 kN / cm ²
Properties	v=0,3
Element	Version A.) beam element (7DOF)
types	Version B.) shell elements
Target	Comparison of buckling shapes in case of beam model and the alternative shell model (for
	in-plane buckling) with the analytical solution

Analytical solution of column deflection:

$$w(x) = A \sin(kx),$$

$$k = \frac{n\pi}{l} \text{ with } n \in \mathbb{N}.$$

Results:

Mode 1 - Buckling around weak axis n=1						
	Analytica	l solution	Results of AxisVM			
n in	A.)	В.)	C.)	D.)	e	e
nat∈ ctio	max. amplitude	max. amplitude		Shell	C.	D.
Coordir z-diree	scaled to AxisVM (Beam) Asin(nඤ/L) with n=1; A=0,318	scaled to AxisVM (Shell) Asin(nπz/L) with n=1; A=0,317	Beam (7DOF)	Investigated in the neutral axis	Differ A./	Differ B./
z	eY	eY	eY	eY	[0/]	[0/1
[m]	[-]	[-]	[-]	[-]	[70]	[70]
0	0,0000	0,0000	0,0000	0,000	0,000	0,000
0,5	0,0983	0,0980	0,0980	0,098	-0,273	0,042
1	0,1869	0,1863	0,1870	0,187	0,045	0,359
1,5	0,2573	0,2565	0,2580	0,257	0,284	0,211
2	0,3024	0,3015	0,3030	0,302	0,186	0,171
2,5	0,3180	0,3170	0,3180	0,3170	0,000	0,000
3	0,3024	0,3015	0,3030	0,302	0,186	0,171
3,5	0,2573	0,2565	0,2580	0,257	0,284	0,211
4	0,1869	0,1863	0,1870	0,187	0,045	0,359
4,5	0,0983	0,0980	0,0980	0,098	-0,273	0,042
5	0,0000	0,0000	0,0000	0,000	0,000	0,000

		Mode 3 - Buckling ar	ound weak a	xis n=2	-	
	Analytica	l solution	Results o	of AxisVM		
n n	A.)	В.)	C.)	D.)	e	e
nat€ ctio	max amplitude	max amplitude		Shell	C.	enc D.
rdir lire	scaled to AxisVM	scaled to AxisVM	Beam	Investigated	fer A./	fer B./
00] z-c	(Beam)	(Shell)	(7DOF)	in the neutral	Dif	Dif
0	Asin($n\pi z/L$) with n=1: A=0.159	ASIN($n\pi z/L$) with $p=1: A=0.161$, , ,	axis		
7	۳۵۱۱۱–۱, A=0,155 PY	۵۷ - Wittiniii ام	e۷	eΥ		
[m]	[_]	[-]	[_]	[-]	[%]	[%]
0	0.00	0.00	0.000	0.000	0.000	0.000
0.25	0,00	0,00	0,000	0,000	-0 273	0,000
0,25	0,05	0,05	0,049	0,05	0,273	0,497
0,5	0,09	0,03	0,034	0,035	0,377	0,500
0,75	0,15	0,15	0,129	0,151	0,204	0,571
1 25	0,15	0,15	0,151	0,155	-0,144	-0,078
1,25	0,16	0,16	0,159	0,161	0,000	0,000
1,5	0,15	0,15	0,151	0,153	-0,144	-0,078
1,75	0,13	0,13	0,129	0,13	0,284	-0,194
2	0,09	0,09	0,094	0,095	0,577	0,386
2,25	0,05	0,05	0,049	0,05	-0,273	0,497
2,5	0,00	0,00	0,000	0,000	0,000	0,000
2,75	-0,05	-0,05	-0,049	-0,05	-0,273	0,497
3	-0,09	-0,09	-0,094	-0,095	0,577	0,386
3,25	-0,13	-0,13	-0,129	-0,13	0,284	-0,194
3,5	-0,15	-0,15	-0,151	-0,153	-0,144	-0,078
3,75	-0,16	-0,16	-0,159	-0,161	0,000	0,000
4	-0,15	-0,15	-0,151	-0,153	-0,144	-0,078
4,25	-0,13	-0,13	-0,129	-0,131	0,284	0,571
4,5	-0,09	-0,09	-0,094	-0,095	0,577	0,386
4,75	-0,05	-0,05	-0,049	-0,05	-0,273	0,497
5	0,00	0,00	0,000	0,000	0,000	0,000

Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: Lattorsbuckling7DOF_v01.axs; Lattorsbuckling_shell_v01.axs

MODE1 k=1						
	Analytic	Analytical solution		Results of AxisVM		
e in on	A.)	В.)	C.)	D.)	Ice	ce
inat ectic	max amplitude scaled	max amplitude scaled		Shell	ren /C.	ren /D.
ordi dire	to AxisVM (Beam)	to AxisVM (Shell)	Beam	Investigated in	iffe A.	iffe. B.
× Co	D1sin(kπz/L)	D1sin(kπx/L)	(7DOF)	the neutral	D	Ō
	with k=1; D1=1,951	with k=1; D1=1,993		axis		
х	φχ	φχ	φχ	φχ	[0/]	[0/]
[m]	[-]	[-]	[-]	[-]	[70]	[70]
0	0,000	0,000	0,000	0,00000	0,000	0,000
1	0,603	0,616	0,603	0,63926	0,000	3,666
2	1,147	1,171	1,147	1,18592	0,000	1,227
3	1,578	1,612	1,578	1,61909	0,000	0,422
4	1,855	1,895	1,855	1,89708	0,000	0,093
5	1,951	1,993	1,951	1,993	0,000	0,000
6	1,855	1,895	1,855	1,89708	0,000	0,093
7	1,578	1,612	1,578	1,61909	0,000	0,422
8	1,147	1,171	1,147	1,18592	0,000	1,227
9	0,603	0,616	0,603	0,63926	0,000	3,666
10	0,000	0,000	0,000	0,00000	0,000	0,000

	Analytic	al solution	Results	of AxisVM		
e in	A.)	В.)	C.)	D.)	lce	lce
Coordinat x-directio	max amplitude scaled to AxisVM (Beam) D1sin(kπx/L) with k=1; D1=1,088	max amplitude scaled to AxisVM (Shell) D1sin(kπx/L) with k=1; D1=1,099	Beam (7DOF)	Shell Investigated in the neutral axis	Differer A./C.	Differer B./D.
x	φχ	φχ	φχ	φχ	[0/]	[0/]
[m]	[-]	[-]	[-]	[-]	[%]	[%]
0	0,00	0,00	0,000	0,000	0,000	0,000
0,5	0,34	0,34	0,336	0,334	0,000	-0,695
1	0,64	0,64	0,640	0,652	0,000	1,825
1,5	0,88	0,88	0,880	0,890	-0,001	1,088
2	1,04	1,04	1,035	1,047	-0,001	1,160
2,5	1,09	1,09	1,088	1,098	0,000	0,892
3	1,04	1,04	1,035	1,041	-0,001	0,603
3,5	0,88	0,88	0,880	0,884	-0,001	0,384
4	0,64	0,64	0,640	0,651	0,000	1,699
4,5	0,34	0,34	0,336	0,339	0,000	0,887
5	0,00	0,00	0,000	-0,001	0,000	0,000
5,5	-0,34	-0,34	-0,336	-0,339	0,000	0,849
6	-0,64	-0,64	-0,640	-0,646	0,000	0,992
6,5	-0,88	-0,88	-0,880	-0,889	-0,001	0,970
7	-1,04	-1,04	-1,035	-1,046	-0,001	1,057
7,5	-1,09	-1,09	-1,088	-1,099	0,000	0,967
8	-1,04	-1,04	-1,035	-1,042	-0,001	0,660
8,5	-0,88	-0,88	-0,880	-0,889	-0,001	1,015
9	-0,64	-0,64	-0,640	-0,655	0,000	2,366
9,5	-0,34	-0,34	-0,336	-0,338	0,000	0,406
10	0,00	0,00	0,000	0,000	0,000	0,000
Software Release Number: X7r1a Date: 06. 02. 2023. Tested by: InterCAD File name: Platebuckling_aperb2_v01.axs

	MODE1 - X dire	ection (y=b/2)	
~	Analytical solution	Results of AxisVM	
Coordinate ir X-direction	A.) max amplitude scaled to AxisVM sin(mπx/a) with m=2 ; A=0,449	В.)	Difference
х	ez	ez	A/B
[m]	[-]	[-]	[%]
0	0,000	0,000	0,000
0,13103	0,180	0,181	0,745
0,21758	0,284	0,285	0,504
0,34481	0,397	0,398	0,330
0,4232	0,436	0,437	0,230
0,51083	0,449	0,449	0,058
0,62134	0,417	0,417	0,055
0,68552	0,375	0,375	0,034
0,76381	0,303	0,303	-0,139
0,82492	0,235	0,235	0,128
0,88599	0,157	0,157	-0,257
0,96395	0,051	0,051	0,505
1,014	-0,020	-0,02	1,292
1,11402	-0,157	-0,157	-0,265
1,17503	-0,235	-0,235	0,154
1,23607	-0,303	-0,303	-0,098
1,31441	-0,375	-0,375	0,048
1,37604	-0,415	-0,416	0,149
1,44049	-0,441	-0,442	0,186
1,49962	-0,449	-0,449	0,000
1,53441	-0,446	-0,447	0,139
1,61578	-0,420	-0,421	0,327
1,69889	-0,364	-0,366	0,501
1,78402	-0,282	-0,283	0,420
1,87007	-0,178	-0,179	0,431
2	0,000	0,000	0,000

MODE1 - Y direction (x=a/4)					
_	Analytical solution	Results of AxisVM			
Coordinate in Y-direction	A.) max amplitude scaled to AxisVM sin(nπy/b) with n=1 ; A=0,449	В.)	Difference		
У	ez	ez	A/B		
[m]	[-]	[-]	[%]		
0	0,000	0,000	0,000		
0,08673	0,121	0,121	0,140		
0,17370	0,233	0,234	0,412		
0,21730	0,283	0,284	0,261		
0,25910	0,326	0,327	0,172		
0,26286	0,330	0,331	0,285		
0,30461	0,367	0,368	0,263		
0,34818	0,399	0,4	0,278		
0,39176	0,423	0,424	0,167		
0,4347	0,440	0,44	0,094		
0,47137	0,447	0,448	0,182		
0,50471	0,449	0,449	0,011		
0,51679	0,448	0,449	0,139		
0,56497	0,440	0,44	0,073		
0,60957	0,423	0,423	0,080		
0,65332	0,398	0,399	0,272		
0,69684	0,366	0,367	0,313		
0,74033	0,327	0,328	0,309		
0,78373	0,282	0,283	0,307		
0,87037	0,178	0,178	0,090		
0,95681	0,061	0,061	0,433		
1	0,000	0,000	0,000		

🔺 axisvi	Verification	Examples

Software Release Number: X7r1a Date: 09. 02. 2023. Tested by: InterCAD File name: RC column1.axs

Thema	N-M interaction curve of cross-section (EN 1992-1-1:2004).					
Analysis Type	Linear static analysis+design.					
Geometry	2φ20 3φ28 Section: 300x400 mm Covering: 40 mm	*	206.0 206.0	400,0		
Loads	Arbitrary.					
Boundary Conditions	Arbitrary.					
Material Properties	Concrete: f_{cd} =14,2 N/mm ² e_{c1} =0,002 e_{cu} =0,00 Steel: f_{sd} =348 N/mm ² e_{su} =0,015	35 (parabola-co	onstans σ-ε diagr	am)		
Target	Compare the program curve.	results with wit	h hand calculatio	on at keypoints of M-	N interaction	
Results	6		2			
	N [kN]	M [kNm]	N AxisVM	M(N) AxisVM	e %	
	1 -2561	+61	-2565,4	+61,3	+0,7	
	2 -1221	+211	-1200	+209,6	-0,6	
	3 0	+70	0	+70,5	+0,7	
	4 +861	-61	865,4	-61,3	+0,7	
	5 0	-190	0	-191,2	+0,6	
	6 -362	-211	-350	-209,6	-0,6	
	Reference: Dr. Kollár L. P.,	Vasbetonszerkezet	ek I. Műegyetemi kia	ıdó		

Software Release Number: X7r1a Date: 09. 02. 2023. Tested by: InterCAD File name: RCbeam.axs

Software Release Number: X7r1a Date: 09. 02. 2023. Tested by: InterCAD File name: RC_Slab_1.axs

Software Release Number: X7r1a Date: 09. 02. 2023. Tested by: InterCAD File name: RCcolumn.axs. RCLcolumn.axs

Thema	Nonlinear analysis of RC columns according to EC2, EN 1992-1-1:2010.
Analysis Type	Materially and geometrically nonlinear analysis.
Geometry	
Deveden	
Conditions	
Material Properties	Concrete: C25/30, φ = 2,0 Steel: B500B
Element types	Simple 12 DOF beam elements (Euler-Bernoulli beam)
Target	ez, max

Software Release Number: X7r1a Date: 15. 02. 2023. Tested by: InterCAD File name: RCcolumn2.axs

Software Release Number: X7r1a Date: 15. 02. 2023. Tested by: InterCAD File name: Rccolumn3.axs

Software Release Number: X7r1a Date: 14. 02. 2023. Tested by: InterCAD File name: RCcolumnVT.axs

Thema	Shear and torsion check of RC column according to EC2, EN 1992-1-1:2010.
Analysis Type	Materially and geometrically linear analysis.
Geometry	▲ Checking concret columns - Eurocode [1] - × Eie Edit Display Window - × B → Reinforcement bar Column check - × Eurocode-H - × • • • C25320 • • • • • • • C25320 •
	Q Q II + G R Q < >> Design calculations II Q Close Cancel
Loads	$N_{Ed} = 1000 \text{ kN}$ $V_{zEd} = 100 \text{ kN}$ $T_{xEd} = 60 \text{ kNm}$
Properties	Concrete: C25/30 Steel: B500B
	$A_{sw} = \Phi 10/125$ c = 30 mm $\theta = 45^{\circ}$
Element types	Simple 12 DOF beam elements (Euler-Bernoulli beam)
Target	Shear and torsion check

Results

			-			
			Hand	AxisVM	ε%	
		V/ [L-N]]	calculation	400.0	4	
	X-Z		199.1	199.0	<1	
	plane		252.5	202.0	<1	
			1017.0	20.6	<1	
			30.7	30.0	<1	
			0.917	0.917	0	
		<u></u> Λ _{_1} [mm ²]	780	780	0	
Checking conc File Edit Display Reinfore	rete columns - Eurocode [r Window cement bars Column cl 2 I III ST1	H] reck	N [kN] = 0 ~ H	= 1 💽 V = 1 🕞	- (- ×
	Eurocode-H C25/30 Cross-section 40x60 m ²] = 2400 B5008 ement s1 (A ₈ = 16.08 ci (%) = 0 Stirrup 10; mm] = 1.00 β_{xx} = 1.00 [m] = 4. $\beta_{yx} = 1.00$ [m] = 4. $\beta_{xx} = 0.00$ m = 5. $\beta_{xx} = 0.00$ m	× 1000 125 125 125 125 125 125 125 125	2.8KN		Eurocode-H Case : Linee f ₁₈ = 1.000 C25/30 Cross-section 40x60 A _c [cm ²] = 2400.0 BS008 Reinforcement s1 A _a /A _c (2%) = 0.67 Utilization(V-T) n _V = 0.006 n _{VV2} = 0.396 n _{VVV2} = 0.402 n _{VVV2} = 0.206 n _{VV} = 0.206 n _{VV} = 0.206 n _{VV} = 0.206 n _{VVV2} = 0.206 n _{VV} = 0.206	x × × × × × × × × × × × × × × × × × × ×

Software Release Number: X7r1a Date: 15. 02. 2023. Tested by: InterCAD File name: beam2.axs

Software Release Number: X7r1a Date: 20. 02. 2023. Tested by: InterCAD File name: 3_10 Plastic biaxial bending interaction.axs

Element types	Beam e	lement				
Target	Interact	ion check taking into	account plastic re	sistances		
Results	Dunai, L., Horváth, L., Kovács, N., Verőci, B., Vigh, L. G.: "Acélszerkezetek méretezése a: Eurocode 3 alapján, Gyakorlati útmutató" (Design of steel structures according to Eurocode 3,) Magyar Mérnöki Kamara Tartószerkezeti tagozata, Budapest, 2009.				zése az	
	Exercis	e 3.10., page 28.				
	Analitical AxisVM e[%]					
		M _{y,Ed} [kNm]	91.8	91.8	-	
		M _{z,Ed} [kNm]	6.75	6.75	-	
		M _{pl,y,Rd} [kNm]	113.74	113.74	0.00	
		M _{pl,z,Rd} [kNm]	22.78	22.78	0.00	
		α	2	2	-	
		β	1	1	-	
		capacity ratio [-]	0.948	0.948	0.00	

Software Release Number: X7r1a Date: 20. 02. 2023. Tested by: InterCAD File name: 3_12 _MNV_Interaction.axs

Results	Analytical sol	ution in the following bo	ok:			
	Dunai, L., Ho Eurocode 3 a Eurocode 3,)	ai, L., Horváth, L., Kovács, N., Verőci, B., Vigh, L. G.: "Acélszerkezetek méretezése az ocode 3 alapján, Gyakorlati útmutató" (Design of steel structures according to ocode 3,) Magyar Mérnöki Kamara Tartószerkezeti tagozata, Budapest, 2009.				
	Exercise 3.12	2., page 31-33.				
			Analytical solution	AxisVM results	e[%]	
		N _{Ed} [kN]	500	500	-	
		V _{z,Ed} [kN]	300	300	-	
		M _{y,Ed} [kNm]	140	140	-	
		Pure compression				
		N _{pl,Rd} [kN]	2148	2147.6	~0	
		capacity ratio [-]	0.233	0.233	-	
		Pure shear				
		V _{pl,z,Rd} [kN]	394.2	394.5	~0	
		capacity ratio [-]	0.761	0.761	-	
		Pure bending				
		M _{pl,y,Rd} [kNm]	176.8	176.7	~0	
		capacity ratio [-]	0.792	0.792	-	
		Interaction check				
		ρ	0.273	0.2715	~0	
		M _{V,Rd} [kNm]	163.96	163.9	~0	
		n	0.233	0.233	-	
		а	0.232	0.23	~0	
		M _{NV,Rd} [kNm]	142.2	142.2	~0	
		capacity ratio [-]	0.985	0.984	~0	

Software Release Number: X7r1a Date: 20. 02. 2023. Tested by: InterCAD File name: 3_15 Központosan nyomott rúd - I szelvény.axs

Results	Analytica	Analytical solution in the following book:				
	Dunai, L. Eurocode Eurocode	, Horváth, L., Ková e 3 alapján, Gyako e 3,) Magyar Mérn	ács, N., Verőci, B., rlati útmutató" (De ıöki Kamara Tartó:	Vigh, L. G.: "Acéle sign of steel struc szerkezeti tagozat	szerkezetek méret tures according to a, Budapest, 2009	ezése az
	Exercise	3.15., P. 37-39.				
			Analytical solution	AxisVM	e[%]	
		$\overline{\lambda}_{\mathrm{y}}$ [-]	0.673	0.673	~0	
		$\overline{\lambda}_{z}$ [-]	0.771	0.769	~0	
		X _y [-]	0.8004	0.7988	~0	
		X _z [-]	0.6810	0.6815	~0	
		N _{b,Rd} [kN]	1504.3	1505.3	~0	

Software Release Number: X7r1a Date: 20. 02. 2023. Tested by: InterCAD File name: 3_21 Központosan nyomott rúd - T szelvény.axs

Results	Analytica	l solution in the fol	lowing book:			
	Dunai, L. Eurocode Eurocode	, Horváth, L., Ková e 3 alapján, Gyako e 3,) Magyar Mérn	ács, N., Verőci, B., rlati útmutató" (De iöki Kamara Tartós	Vigh, L. G.: "Acéls sign of steel struct szerkezeti tagozat	szerkezetek mérete tures according to a, Budapest, 2009.	ezése az
	Exercise	3.21., P. 47-49.				
			Analitical solution	AxisVM	e[%]	
		z _s [cm]	49.0	49.0	-	
		z _w [cm]	4.10	4.03	-1.71	
		i _w [cm] *	9.05	9.03	-0.22	
		$\overline{\lambda}_{\mathrm{y}}$ [-]	0.542	0.542	-	
		X _y [-]	0.8204	0.8195	-0.11	
		N _{b,Rd,1} [kN]	1326,4	1325,0	-0.11	
		$\overline{\lambda}_{\mathrm{TF}}$ [-] *	0.667	0.667	-	
		Xte [-]	0.7432	0.7446	+0.19	
		N _{b,Rd,2} [kN]	1201.6	1203.9	+0.19	
	* hidden	partial results, Axis	s does not show th	nem among the ste	el design results	

Software Release Number: X7r1a Date: 20. 02. 2023. Tested by: InterCAD File name: Külpontosan nyomott rúd - RHS szelvény.axs

 $\lambda_{IT} > 0.2 \rightarrow$ torsional buckling may occur $\alpha_{LT} = 0.76$ $\phi = \frac{1 + \alpha_{\text{LT}} (\bar{\lambda}_{\text{LT}} - 0.2) + \bar{\lambda}_{\text{LT}}^{2}}{2} = 0,5443$ $\chi_{\mathrm{LT}} \coloneqq \frac{1}{\phi + \sqrt{\phi^2 - \overline{\lambda}_{\mathrm{LT}}}^2} = 0.9684$ $M_{b,Rd} = \chi_{\text{LT}} \cdot M_{pl,Rd,v} = 0.9684 \cdot 56.54 \, kNm = 54.76 \, kNm$ Interaction of bending and buckling $N_{Rk} = A \cdot f_v = 43,41 \text{ cm}^2 \cdot 27,5 \text{ kN/cm}^2 = 1193,8 \text{ kN}$ $M_{v,Rk} = M_{pl,Rd,v} = 56,54$ kNm Equivalent uniform moment factors according to EN 1993-1-1 Annex B, Table B.3.: $\phi = 1.0$ $C_{mv} = 0.6 + 0.4 \phi = 1.0 > 0.4$ For members susceptible to torsional deformations the interaction factors may be calculated according to EN 1993-1-1 Annex B, Table B.2.: $k_{yy} = C_{my} \left\{ 1 + (\overline{\lambda}_{LT} - 0.2) \frac{N_{Ed}}{\chi_y N_{PL}/\gamma_{M1}} \right\} < C_{my} \left\{ 1 + 0.8 \frac{N_{Ed}}{\chi_y N_{PL}/\gamma_{M1}} \right\}$ $k_{yy} = 1,0 \left\{ 1 + (0,87 - 0,2) \cdot \frac{200}{0.7531 \cdot 1193.78 / 1.0} \right\} < 1,0 \left\{ 1 + 0,8 \cdot \frac{200}{0.7531 \cdot 1193.78 / 1.0} \right\}$ $k_{VV} = \min(1,149;1,178) = 1,149$ $k_{zy} = \left\{ 1 - \frac{0.1 \cdot \overline{\lambda}_{z}}{C_{mLT} - 0.25} \cdot \frac{N_{Ed,x}}{\chi_{z} N_{Rk} / \gamma_{M1}} \right\} \ge \left\{ 1 - \frac{0.1}{C_{mLT} - 0.25} \cdot \frac{N_{Ed,x}}{\chi_{z} N_{Rk} / \gamma_{M1}} \right\}$ $k_{ZY} = \left\{ 1 - \frac{0.1 \cdot 1.2040}{1.0 - 0.25} \cdot \frac{200}{0.5275 \cdot 1193,78 / 1.0} \right\} \ge \left\{ 1 - \frac{0.1}{1.0 - 0.25} \cdot \frac{200}{0.5275 \cdot 1193,78 / 1.0} \right\}$ $k_{ZV} = \max(0.9490; 0.9577) = 0.9577$ $\frac{N_{Ed}}{\chi_{y} \cdot N_{Rk} / \gamma_{M1}} + k_{yy} \frac{M_{y,Ed}}{\chi_{y} \cdot M_{y,Rk} / \gamma_{M1}} =$ $=\frac{200}{0,7516 \cdot 1193,78} + 1,149 \cdot \frac{20}{0,9684 \cdot 56,54} = 0,6426$ $\frac{N_{Ed}}{\chi_{z} \cdot N_{Rk} / \gamma_{M1}} + k_{zy} \frac{M_{y,Ed}}{M_{y,Rk} / \gamma_{M1}}$ $=\frac{200}{0,5275 \cdot 1193,78} + 0,9577 \cdot \frac{20}{0,9684 \cdot 56,54} = 0,6674$

	Analytical solution	AxisVM	e [%]
$N_{Rk} = N_{pl,Rd} [kN]$	1193.8	1193.9	~0
$\overline{\lambda}_{y}$ [-]	0.873	0.873	~0
$\overline{\lambda}_z$ [-]	1.204	1.205	~0
X _y [-]	0.7516	0.7513	~0
X _z [-]	0.5275	0.5271	~0
N _{b,Rd} [kN]	629.7	629.23	-0.10
$M_{c,Rd} = M_{pl,Rd} [kNm]$	56.54	56.54	-
C ₁	1.000	1.000	-
M _{cr} [kNm]	977.41	977.4	~0
$\overline{\lambda}_{_{LT}}$ [-]	0.2405	0.2405	-
Xlt [-]	0.9684	1.000	-
M _{b,Rd} [kNm]	54.76	56.54	+3.25
C _{my} [-]	1.0	1.0	-
k _{yy} [-]	1.149	1.150	~0
k _{zy} [-]	0.9577	0.69	-27.95
Interaction capacity ratio 1 [-]	0.643	0.643	-
Interaction capacity ratio 2 [-]	0.667	0.562	-15.74

Software Release Number: X7r1a Date: 20. 02. 2023. Tested by: InterCAD File name: 3_26 Külpontosan nyomott rúd - I szelvény.axs

Analytical solution: Section class: 1. Normal force $N_{\rm cr,y} = \frac{\pi^2 E I_y}{K_y L} = \frac{\pi^2 21000 \cdot 2510,7}{400} = 3252,3 \text{ kN}$ $N_{cr,z} = \frac{\pi^2 E I_z}{K_z L} = \frac{\pi^2 21000 \cdot 924.6}{400} = 1197.7 \text{ kN}$ $N_{pl,Rd} = A \cdot f_y = 45,26 \cdot 23,5 = 1063,6 \text{ kN}$ $\overline{\lambda}_{y} = \sqrt{\frac{N_{pl}}{N_{rms}}} = \sqrt{\frac{1063,6}{3252.3}} = 0,5719$ $\overline{\lambda}_{Z} = \sqrt{\frac{N_{pl}}{N}} = \sqrt{\frac{1063,6}{1107.7}} = 0.9424$ based on buckling curve "b" in y direction and "c" in z direction: $\chi_{v} = 0,8508$ $\chi_7 = 0,5741$ $N_{b,Rd,1} = \frac{\chi_y A f_y}{\gamma_1} = \frac{0.8508 \cdot 45,26 \text{ cm}^2 \cdot 23,5 \text{ kN/cm}^2}{1,0} = 904,92 \text{ kN} > N_{Ed,x} = 280 \text{ kN}$ $N_{b,Rd,2} = \frac{\chi_z A f_y}{\gamma_1} = \frac{0.5741 \cdot 45,26 \text{ cm}^2 \cdot 23,5 \text{ kN/cm}^2}{1,0} = 610,62 \text{ kN} > N_{Ed,x} = 280 \text{ kN}$ Bending $M_{pl,Rd,y} = \frac{W_{pl,y} f_y}{\gamma_1} = \frac{324.9 \text{ cm}^3 \cdot 23.5 \text{ kN/cm}^2}{1.0} = 76.35 \text{ kNm} > M_{Ed,y} = 9.81 \text{ kNm}$ $M_{pl,Rd,z} = \frac{W_{pl,z} f_y}{v_{e}} = \frac{156.5 \text{ cm}^3 \cdot 23.5 \text{ kN/cm}^2}{10} = 36.78 \text{ kNm} > M_{Ed,z} = 8.88 \text{ kNm}$ Calculation of the critical moment:

 $C_{1} = 1,132 \quad (\text{due to the } M_{y} \text{ moment diagram})$ $M_{cr} = C_{1} \frac{\pi^{2} E I_{z}}{(kL)^{2}} \sqrt{\left(\frac{k_{z}}{k_{w}}\right)^{2} \frac{I_{w}}{I_{z}} + \frac{(kL)^{2} G I_{t}}{\pi^{2} E I_{z}}} =$ $M_{cr} = 1,132 \frac{\pi^{2} 21000 \text{ kN/cm}^{2} \cdot 924,6 \text{ cm}^{4}}{(400 \text{ cm})^{2}} \sqrt{\frac{58932 \text{ cm}^{6}}{924,6 \text{ cm}^{4}} + \frac{(400 \text{ cm})^{2} \cdot 8077 \text{ kN/cm}^{2} \cdot 15 \text{ cm}^{4}}{\pi^{2} \cdot 21000 \text{ kN/cm}^{2} \cdot 924,6 \text{ cm}^{4}}}$ $M_{cr} = 174,1 \text{ kNm}$

For rolled section, the following procedure may be used to determine the reduction factor (EN 1993-1-1, Paragraph 6.3.2.3.): $\overline{\lambda}_{\text{LT}} = \sqrt{\frac{W_y f_y}{M_{\text{cr}}}} = \sqrt{\frac{324.9 \text{ cm}^3 \cdot 23.5 \text{ kN/cm}^2}{174.10 \text{ kNm}}} = 0.6622$ $\phi = \frac{1 + \alpha_{\text{LT}} (\bar{\lambda}_{\text{LT}} - 0.4) + 0.75 \cdot \bar{\lambda}_{\text{LT}}^{2}}{2} = 0,7090$ $\chi_{\rm LT} := \frac{1}{\phi + \sqrt{\phi^2 - 0.75 \cdot \bar{\lambda}_{\rm LT}^2}} = 0,8881$ $M_{b,Rd} = \chi_{LT} \cdot M_{pl,Rd,y} = 0,8881 \cdot 76,35 kNm = 67,81 kNm$ Interaction of axial force and bi-axial bending $N_{Rk} = N_{pl,Rd} = 1063,6 \text{ kN}$ $M_{y,Rk} = M_{pl,Rd,y} = 76,35 \text{ kNm}$ $M_{z,Rk} = M_{pl,Rd,z} = 36,78 \text{ kNm}$ Equivalent uniform moment factors according to EN 1993-1-1 Annex B, Table B.3.: $\psi = 0, \alpha = 0$ in both directions $C_{my} = C_{mLT} = 0.95 + 0.05 \alpha = 0.95$ (distributed load) $C_{mz} = 0.90 + 0.10 \alpha = 0.90$ (concentrated load) $\mathbf{k}_{yy} = \mathbf{C}_{my} \left\{ 1 + (\overline{\lambda}_{y} - 0.2) \frac{\mathbf{N}_{Ed,x}}{\chi_{y} \mathbf{N}_{Rk} / \gamma_{M1}} \right\} \le \mathbf{C}_{my} \left\{ 1 + 0.8 \frac{\mathbf{N}_{Ed,x}}{\chi_{y} \mathbf{N}_{Rk} / \gamma_{M1}} \right\}$ $k_{yy} = 0.95 \cdot \left\{ 1 + (0.5719 - 0.2) \cdot \frac{280}{0.8508 \cdot 1063.6 / 1.0} \right\} \le 0.95 \cdot \left\{ 1 + 0.8 \cdot \frac{280}{0.8508 \cdot 1063.6 / 1.0} \right\}$ $k_{VV} = \min(1,0593;1,1851) = 1,0593$ $\mathbf{k}_{zy} = \left\{ 1 - \frac{\mathbf{0}, \mathbf{1} \cdot \overline{\lambda}_{z}}{\mathbf{C}_{mLT} - \mathbf{0}, 25} \cdot \frac{\mathbf{N}_{Ed, x}}{\chi_{z} \mathbf{N}_{Rk} / \gamma_{M1}} \right\} \ge \left\{ 1 - \frac{\mathbf{0}, \mathbf{1}}{\mathbf{C}_{mLT} - \mathbf{0}, 25} \cdot \frac{\mathbf{N}_{Ed, x}}{\chi_{z} \mathbf{N}_{Rk} / \gamma_{M1}} \right\}$ $k_{ZY} = \left\{ 1 - \frac{0.1 \cdot 0.9424}{0.95 - 0.25} \cdot \frac{280}{0.5741 \cdot 1063.6 / 1.0} \right\} \ge \left\{ 1 - \frac{0.1}{0.95 - 0.25} \cdot \frac{280}{0.5741 \cdot 1063.6 / 1.0} \right\}$ $k_{ZV} = \max(0.9383; 0.9345) = 0.9383$

$$\begin{aligned} k_{ZZ} &= C_{mZ} \left\{ 1 + (2 \cdot \bar{\lambda}_{z} - 0.6) \frac{N_{Ed, X}}{\chi_{z} N_{Rk} / \gamma_{M1}} \right\} \leq C_{mZ} \left\{ 1 + 1.4 \frac{N_{Ed, X}}{\chi_{z} N_{Rk} / \gamma_{M1}} \right\} \\ k_{ZZ} &= 0.90 \left\{ 1 + (2 \cdot 0.9424 - 0.6) \frac{280}{0.5741 \cdot 1063.6 / 1.0} \right\} \leq 0.90 \left\{ 1 + 1.4 \frac{280}{0.5741 \cdot 1063.6 / 1.0} \right\} \\ k_{ZZ} &= \min (1.4303 ; 1.478) = 1.4303 \\ k_{YZ} &= 0.6 k_{ZZ} = 0.8582 \end{aligned}$$
$$\begin{aligned} \frac{N_{Ed, X}}{\chi_{y} \cdot N_{Rk} / \gamma_{M1}} + k_{yy} \frac{M_{y,Ed}}{\chi_{LT} \cdot M_{y,Rk} / \gamma_{M1}} + k_{yz} \frac{M_{z,Ed}}{M_{z,Rk} / \gamma_{M1}} = \\ &= \frac{280}{0.8508 \cdot 1063.6} + 1.0593 \cdot \frac{9.81}{0.8881 \cdot 76.35} + 0.8582 \cdot \frac{8.88}{36.78} = 0.6699 \\ \frac{N_{Ed, X}}{\chi_{z} \cdot N_{Rk} / \gamma_{M1}} + k_{zy} \frac{M_{y,Ed}}{\chi_{LT} \cdot M_{y,Rk} / \gamma_{M1}} k_{zz} \frac{M_{z,Ed}}{M_{z,Rk} / \gamma_{M1}} = \\ &= \frac{280}{0.5741 \cdot 1063.6} + 0.9383 \cdot \frac{9.81}{0.8881 \cdot 76.35} + 1.4303 \cdot \frac{8.88}{36.78} = 0.9396 \end{aligned}$$

	Analytical solution	AxisVM	e [%]
N _{pl,Rd} [kN]	1063.6	1063.6	-
N _{cr,y} [kN]	3252.3	3252.4	-
N _{cr,z} [kN]	1197.7	1197.7	-
λ _{y, rel} [-]	0.5719	0.5719	-
λ _{z, rel} [-]	0.9424	0.9424	-
Ху [-]	0.8508	0.8509	-
X _z [-]	0.5741	0.5741	-
M _{pl,Rd,y} [kNm]	76.35	76.34	~0
M _{pl,Rd,z} [kNm]	36.78	36.78	~0
C1 [-]	1.132	1.13	
M _{cr} [kNm]	174.1	172.99	-0.6
λ _{LT, rel} [-]	0.6622	0.6643	+0.3
X _{LT} [-]	0.8881	0.8871	-0.1
M _{b,Rd} [kNm]	67.81	67.72	-0.1
$C_{my} = C_{mLt}$ [-]	0.95	0.95	-
C _{mz} [-]	0.90	0.95	+5.5*
k _{yy}	1.0593	1.0593	-
k _{zz}	1.4303	1.5096	+5.5**
k _{yz}	0.8582	0.9058	+5.5**
k _{zy}	0.9383	0.9383	-
Interaction capacity ratio 1	0.6687	0.6801	+1.7**
Interaction capacity ratio 2	0.9374	0.9564	+2.0**

the equivalent uniform moment factor (C_{my} , C_{mz} , C_{mLT}) for both uniform load and concentrated load, and then takes the higher value. The effect on the final result (efficiency) is $+1\sim2\%$. *** the difference is due to the different C_{mz} value

Software Release Number: X7r1a Date: 20. 02. 2023. Tested by: InterCAD File name: Double-symmetric I - Class 4.axs

Dunai, L., Horváth, L., Kovács, N., Verőci, B., Eurocode 3 alapján, Gyakorlati útmutató" (Des Eurocode 3,) Magyar Mérnöki Kamara Tartós Exercise 3.4., P. 14-16. Exercise 3.6., P. 19-21. Exercise 3.13., P. 34.	Vigh, L. G.: "Acé sign of steel struc szerkezeti tagoza	lszerkezetek me tures according ta, Budapest, 2	éretezése a j to 009.
	Analytical solution	AxisVM	e [%]
Uniform compression			
$k_{\sigma, flange} [-]$	0.43	0.43	-
$\bar{\lambda}_{p,flange}[-]$	0.831	0.858	+3.1
$\rho_{flange}[-]$	0.931	0.910	-2.3
b _{eff,f} [cm]	140.0	142.0	+1.4
k _{o,web} [–]	4	4	-
$\bar{\lambda}_{\mathrm{p,web}}[-]$	2.957	2.975	+0.6
ρ _{web} [-]	0.313	0.311	-0.6
b _{eff,web} [cm]	340.8	342.4	+0.5
A _{eff} [cm ²]	99.98	97.46	-2.6
N _{eff} [kN]	3549	3460	+2.6
capacity ratio: N	0.2	0.2	-
Uniform bending			
$k_{\sigma, flange}[-]$	0.43	0.43	-
$\bar{\lambda}_{p,flange}[-]$	0.831	0.856	+2.9
$\rho_{flange}[-]$	0.931	0.911	-2.2
b _{eff,f} [cm]	139.95	142.1	+1.5
Ψ[-]	-0.969	-0.860	-12.7**
k _{σ,web} [−]	23.09	20.45	-12.9**
$\bar{\lambda}_{p,web}$ [–]	1.231	1.320	+6.7**
ρ _{web} [–]	0.739	0.690	-7.1**
b _{eff,web} [cm]	408.6	409.0	+0.1
W _{eff,y,min} [cm ³]	5131	4969.5	-3.2
M _{y,eff,Rd} [kNm]	1821.5	1764.2	-3.2
canacity ratio. M	0.71	0.74	+4.1
capacity ratio. M			

Software Release Number: X7r1a Date: 20. 02. 2023. Tested by: InterCAD File name: Box-section class 4.axs

Results	Analytical solution in the following article:						
	Lee, Chi-King, and Sing-Ping Chiew. "A review calculation for thin-walled steel sections accor 15.3 (2019): 259-266. Example - 2 Example - 3	v of class 4 slenc ding to Ec3." Adv	ler section prop vanced Steel Co	erties onstruction			
		Analytical solution	AxisVM	e [%]			
	Uniform compression						
	$k_{\sigma, flange}$ [-]	4	4	-			
	$\bar{\lambda}_{p,flange}[-]$	2.12	2.12	-			
	$\rho_{flange}[-]$	0.423	0.42	-0.71			
	b _{eff,f} [cm]	41.5	41.4	-0.24			
	$k_{\sigma,web}[-]$	4	4	-			
	$\bar{\lambda}_{p,web}[-]$	2.12	2.12	-			
	$\rho_{web}[-]$	0.423	0.42	-0.71			
	b _{eff,web} [cm]	41.5	41.4	-0.24			
	A _{eff} [cm ²]	169.80	169.7	-0.06			
	N _{eff} [kN]	6028	6024	+0.07			
	capacity ratio: N	0.17	0.17	-			
	Uniform bending						
	$k_{\sigma, flange}[-]$	4	4	-			
	$\bar{\lambda}_{p,flange}[-]$	2.12	2.12	-			
	$\rho_{flange}[-]$	0.423	0.42	-0.71			
	b _{eff,f} [cm]	41.5	41.4	-0.24			
	Ψ[-]	-0.712	-0.650	-9.5*			
	k _{σ,web} [–]	17.25	16.03	-7.6*			
	$\overline{\lambda}_{p,web}$ [–]	1.021	1.059	+3.6			
	ρ _{web} [–]	0.859	0.829	-3.6			
	b _{eff,web} [cm]	49.17	49.16	-0.02			
	W _{eff,y,min} [cm ³]	7844.5	7662.1	-2.4			
	M _{y,eff,Rd} [kNm]	2784.8	2720.05	-2.4			
	capacity ratio: M	0.72	0.74	+2.7			
	capacity ratio: N - M interaction	0.88	0.90	+2.2			
	* Small differences occur due to the applied n cross-sectional properties, where in the analy while in AxisVM several iterations are applied properties.	number of iteration tical solution onl ed to achieve co	ons to calculate y one iteration ponvergence of	the effective was applied, the effective			

Thema	Fire design of steel elements – Unprotected column under axial compression (EN 1993-1-2)
Analysis	Steel Design
Туре	
Geometry	2
	Longth: L = 3.5m
	Section: HE180B
	Buckling length coeff. $Ky = Kz = 0.5$
Loads	Axial force at A: N fi,Ed = 495 kN R30 (ISO fire) required fire resistance
Boundary	eX = eY = eZ = fiZ = 0 at B
Conditions	eX = eY = 0 at A
Material	S275
Properties	$E = 21000 \text{ kN} / \text{cm}^2$
	v = 0,3
Element	Beam element
types	

Results		Analytical solution	AxisVM	e [%]	
	θ [°C]	766	767	+0.1	
	θ_{cr} [°C]	623	633	+1.6	
	k _{sh} [-]	0.624	0.624	-	
	A/V [1/m]	159	158.9	-	
	$\chi_{z,fi}$ [-]	0.714	0.715	+0.1	
	$N_{\scriptscriptstyle b,fi,Rd}$ [kN]	193	191	-1.0	

Software Release Number: X7r1a Date: 20. 02. 2023. Tested by: InterCAD Reference: Jean-Marc Franssen, Paulo Villa Real: Fire Design of Steel Structures (Example 5.6) File name: steel_fire.axs

Results		Analytical solution	AxisVM	e [%]	
	$\theta_{_{cr}}$ [°C]	519	519	-	
	$\overline{\lambda}_{\scriptscriptstyle LT, \theta}$ [1/m]	1.222	1.219	-0.2	
	$\chi_{{\scriptscriptstyle LT},fi}$ [-]	0.364	0.366	+0.5	
	${M}_{\scriptscriptstyle b,fi,{\it Rd}}$ [kNm]	38.8	38.9	+0.2	

Results		Analytical solution	AxisVM	e [%]	
	$ heta_{cr}$ [°C] (no LTB)	595	589	-1.0	
	θ_{cr} [°C]	515	509	-1.2	

Thema	Fire design of steel elements – Beam-column with restrained lateral displacements (EN 1993-1-2)
Analysis	Steel Design
Туре	
Geometry	800 kN 50 kNm 900 kN 50 kNm
Loads	Axial force: N _{fi,Ed} = 800 kN Bending moment: M _{y,fi,Ed} = +/-50 kNm
Boundary Conditions	eX = eY = eZ = fiZ = 0 at B eX = eY = 0 at A
Material	S 235
Properties	$E = 21000 \text{ kN} / \text{cm}^2$
-	v = 0,3
Element	Beam element
types	

Results		Analytical solution	AxisVM	e [%]
	θ_{cr} [°C] (with buckling)	552	553	+0.2
	k _y [-]	0.374	0.35	-6.4
	$\chi_{y,fi}$ [-]	0.871	0.8704	-0.07
	$V_{\it pl,fi,Rd}$ [kN]	208.2	208.3	+0.05
	$N_{\it pl,fi,Rd}$ [kN]	1134	1134.1	~0.0
	 θ_{cr} [°C] (without buckling; M+N) 	516	517	+0.2

Thema	Fire design of timber elements – Unprotected beam (EN 1995-1-2)
Analysis	Timber Design
Type	
Geometry	-
Comony	Section A-A Section A-A Section A-A Finishing 6mm Topping 60mm Insulation 40mm Boards 50mm C24, 120x260mm GL24, 160x735mm
Loads	distributed load: q _{d,fi} = 14.76 kN/m R30 required fire resistance
Boundary	eX = eY = eZ = 0 at B
Conditions	eY = eZ = fiX = 0 at A
Material	GL24h
Properties	$E = 1150 \text{ kN} / \text{cm}^2$
	v = 0.2
Element	Beam element
types	
IVDES	

Results		Analytical solution	AxisVM	e [%]
	d _{ef} [mm]	28	28	0.0
	$\sigma_{m,y,d,fi}$ [N/mm ²]	13.6	13.6	0.0
	f _{m,y,d,fi} [N/mm ²]	27.6	27.6	0.0

Software Release Number: X7r1a Date: 01. 03. 2023. Tested by: InterCAD Reference: Eurocodes: Background & Applications Structural Fire Design File name: timber_fire_2.axs

Thema	Fire design of timber elements – Unprotected column (EN 1995-1-2)
Analysis	Timber Design
Туре	5
Geometry	
	N $\leftarrow 8 \times 1 m = 8 m \rightarrow 4 m$
Loads	Concentrated load on the top: Nuc = 59 kN
LUAUS	R30 required fire resistance
Boundary	eX = eY = eZ = fiZ = 0 at the bottom
Conditions	eX = eY = 0 at the top
Material	C24
Properties	$E = 1100 \text{ kN} / \text{cm}^2$
	v = 0,2
Element	Beam element
types	

Results		Analytical solution	AxisVM	e [%]
	d _{ef} [mm]	31	31	0.0
	k _{c,fi} [-]	0.27	0.27	0.0
	η [-]	0.86	0.85	-1.0

Software Release Number: X7r1a Date: 01. 03. 2023. Tested by: InterCAD Reference: Eurocodes: Background & Applications Structural Fire Design File name: timber_fire_2.axs

Thema	Fire design of timber elements – Protected column (EN 1995-1-2)
Analysis Type	Timber Design
Geometry	
	<i>k</i> —8 x 1 m = 8 m <i>→</i>
Loads	Concentrated load on the top: $N_{d,fi} = 59 \text{ kN}$ R60 required fire resistance; protection: 18 mm gypsum board, $t_a = t_{ch} = 36 \text{ min}$
Boundary	eX = eY = eZ = fiZ = 0 at the bottom
Conditions	eX = eY = 0 at the top
Material	
Properties	$E = 1100 \text{ kN} / \text{cm}^2$ v = 0,2
Element	Beam element
types	

Results		Analytical solution	AxisVM	e [%]
	d _{ef} [mm]	38.8	38.8	0.0
	k _{c,fi} [-]	0.2	0.2	0.0
	η [-]	1.64	1.66	+1.0

Software Release Number: X7r1a Date: 01. 03. 2023. Tested by: InterCAD File name: Earthquake-01-EC.axs

	Dot :: Exmodel N:: 191 All podal masses are Mx=My=Mz=100000 kg					
	All beams 50X40 cm Inertia about vertical axis is multiplied by 1000.					
	Node D	2				
	All columns 60x40 cm					
		-				
	Column B					
		-				
	Support C					
	Z All supports are constrained in all directions. eX=eY=eZ=fiX=fiY=fiZ=0					
	Perspective view					
	Section beams: 60x40 cm					
	Ax=2400 cm2 Ay=2000 cm2 Az=2000 cm2 Ix=751200 cm4 Iy=720000 cm2 Iz=320000000 cm4					
	$Ax=2400 \text{ cm}^2 \text{ Ay}=2000 \text{ cm}^2 \text{ Az}=2000 \text{ cm}^2$					
	Ix=751200 cm4 Iy=720000 cm2 Iz=320000 cm4					
Loads	Nodal masses on eight nodes. Mx=My=Mz=100000 kg					
	Model self-weight is excluded. $a_{t} = 1$					
	Spectrum for X and Y direction of seismic action:					
	$T[s]$ S_d $S_d [m/s^2]$					
	3 0,6000 2,156 4 1,2000 0,005					
	5 3,0000 0,300					
	1,150					
	0,709					
	0,300					
	2,0000 - T[s]					
Boundary	Nodes at the columns bottom ends are constrained in all directions.	_				
Conditions	eX=eY=eZ=fiX=fiY=fiZ=0					
Material	C25/30	_				
Properties	E=3050 kN/cm2 v =0,2 ρ = 0					

AXISVM Verification Examples

Element types	Rib element: account.	ment: Three node straight prismatic beam element. Shear deformation is taken into t.							is taken into		
Target	Compare the The results a CQC combin SRSS combi	the model results with SAP2000 v6.13 results. ts are combined for all modes and all direction of spectral acceleration. Ibination are used for modes in each direction of acceleration. mbination are used for combination of directions.							on.		
Results	Period times of first 5 modes										
	Γ	T[s] SAP200			00 T[s] AxisVM			Difference [%]			
		1	0.7450			0,7450			0		
		2	0,7099			0,7098		+0,01			
		3		0,3601		0.3601		0			
		4		0,2314		0,2314		0			
		5		0,2054		0,20)53		+0,05		
	Modal partici	pating ma	ass rat	tios in X aı	nd Y	direction	s				
	Mode	εX		εХ	Di	ifference		εY	εY	Difference	
		SAP200	00	AxisVM		%	SAI	P2000	AxisVM	%	
	1	0,5719)	0,5723		+0,07	0,	3153	0,3151	-0,06	
	2	0,3650)	0,3647		-0,08	0,	4761	0,4764	+0,06	
	3	0		0		0	0,	1261	0,1261	0	
	4	0,0460)	0,0461		+0,22	0,	0131	0,0131	0	
	5	0,0170)	0,0170		0	0,	0562	0,0561	0	
	Summ	1,0000)	1,0000		0	0,	9868	0,9868	0	
	Internal force	es at the b	ottom	end of Co	olum	n A and C	Colum	in B			
		Column	A (Column A	Di	ifference	Col	umn B	Column B	Difference	
		SAP200	00	AxisVM		%	SAI	P2000	AxisVM	%	
	Nx [kN]			315,15		-0,013	55	57,26	557,29	-0,005	
	Vy [kN]		1	280,34		0	23	32,88	232,88	0	
	Vz [kN]	253,49)	253,49		0	41	2,04	412,04	0	
	Tx [kNm]	34,42		34,41		-0,032	34	4,47	34,46	-0,029	
	My [kNm]	625,13	3	625,12		-0,002	10	38,74	1038,73	-0,001	
	Mz [kNm]	612,32		612,31		0	55	53,41	553,41	0	
	Support force	es of Sup	oort C								
			Suppo	ort C		Support C	;	Diff	erence		
			SAP2	000		AxisVM			%		
	Rx [kN]		280,	34		280,34			0		
	Ry [kN]		253,	49		253,49		-	0		
	Rz [kN]	315,11		11	315,15		-0,013				
	Rxx [kNm		625,13		625,12		-0,002				
	Ryy [KNm	1	612,31		612,31		0				
Rzz [kNm]			34,4	+2		34,41		+(J,029		
	Displacemer	nts of Nod	e D								
	·		Node D		Node D			Difference			
			SAP2000		AxisVM			%			
	eX [mm]		33,521		33,521				0		
	eY [mm]		19,944		19,945		-0,),005		
	eZ [mm]		0,22	29	0,229			0			
	φX [rad]		0,001	133	0,00133				U		
	φY [rad]		0,001	106		0,00106			0		
		0,00257			0,00257		0				

Normal forces:

Bending moments:

Click to get result values or drag a frame to select. Use SHIFT to add elements to the selec

AXISVM Verification Examples

Displacements:

Date: 07. 02. 2018. Tested by: InterCAD

Thema	Clamped beam with symmetrical nonlinear material model – Theoretical backgroun	nd
Geometry	$\begin{array}{c c} & z & & & F \\ \hline A & & \ell & & B \\ y & & & & a \end{array}$	
References	S. Kaliszky Mechanika II. Tankönyvkiadó, Budapest, 1990	
Equations	Material function:	
	$\sigma = C \cdot \varepsilon^n$	(1)
	Moment of inertia:	
	$J_{n+1} = a \int_{-h/2}^{b/2} y^{n+1} dy$	(2)
	Second-order linear differential equation for elastic curve:	
	$\frac{d^2\nu}{dz^2} = -\left(\frac{M}{CJ_{n+1}}\right)^{1/n}$	(3)
	Bending moment:	
	M(z) = F(l-z)	(4)
	Boundary conditions:	
	$z = 0, \frac{dy}{dz} = 0;$	(5)
	z = 0; y = 0	(6)
	Deflection equation based on previous equations $(n = 1/2)$:	
	$y = \frac{F^2 \left(\frac{l^2 z^2}{2} - \frac{l z^3}{6} + \frac{z^4}{12}\right)}{(CJ_{n+1})^{1/n}}$	(7)

Software Release Number: X4r3 Date: 07. 02. 2018. Tested by: InterCAD

Thema	Clamped beam with asymmetrical nonlinear material model – Theoretical backgrou	und
Geometry	S1 S2 S3 F xp x plastic zone l	
Stress distribution	$z_{0}(x)$ σ_{c} σ_{c} σ_{T} σ	
Equations	In the nonlinear zone (S1 section)	
	$\sigma(x,z) = \begin{cases} \sigma_T & \text{if } z_0(x) < z \\ \sigma_T - E\kappa(x)(z - z_0(x)) & \text{if } z < z_0(x) \end{cases}$	(1)
	The normal force and the moment equations of equilibrium are given by	
	$0 = \sigma_T h v - \int_{-\frac{h}{2}}^{z_0} E\kappa(x) (z - z_0(x)) v dz$	(2)
	$F(\ell - x) = -\int_{-\frac{h}{2}} E\kappa(x)(z - z_0)vzdz$	(3)
	Solving equations (2) and (3) the nonlinear cross-section and the curvature is obta	ined by
	$z_0(x) = h - 3\frac{F(\ell - x)}{\sigma_T h v}$	(4)
	$\kappa(x) = \frac{2\sigma_T h}{9E\left[\frac{h}{2} - \frac{2F}{\sigma_T hv}(\ell - x)\right]^2}$	(5)
	The length of the nonlinear zone is obtained from equation (4) under the condition	
	$z_0(x_P) = \frac{h}{2}$	
	$x_P = \ell - \frac{\sigma_T h^2 v}{6E}$	(6)
	The nonlinear zone of the supported cross-section is also obtained from equation	(4)
	$z_0(0) = h - 3\frac{F\ell}{\sigma_T hv}$	(7)
	Substituting equation (4) and (5) to equation (1) under the conditions $x_c = 20$ cm a $z = -\frac{h}{2}$ the maximal compressive stress at the supported end is obtained by:	nd
	$\sigma\left(x_{c}, -\frac{h}{2}\right) = -E\kappa(x_{c})\left(-\frac{h}{2} - z_{0}(x_{c})\right)$	(8)

In the linear zone (S3 section)	
The stress distribution is given by	
$\sigma(x,z) = -E\kappa(x)z$	(9)
The moment equation of equilibrium is given by	
$F(\ell - x) = -\int_{-\frac{h}{2}}^{z_0} E\kappa(x)zvzdz$	(9)
Solving equation (10) the curvature is obtained by	
$\kappa(x) = \frac{12F(\ell - x)}{Eh^3v}$	(11)
Integrating equations (5) and (11) two times the deflection is obtained by	
$e_z(l) = \int_0^\ell \int_0^x \kappa(\xi) d\xi dx$	(12)

Software Release Number: X4r3 Date: 07. 02. 2018. Tested by: InterCAD

Thema	Clamped beam with only compression nonlinear material model – Theoretical back	ground
Geometry	S1 S2 S3 F xp plastic zone l	
Stress distribution	$X < X_p$ $X = X_p$ $X > X_p$	
	$ \begin{array}{c c} & & & & \\ \hline \\ \hline$	
Equations	In the nonlinear zone (S1 section)	
	$\sigma(x,z) = \begin{cases} 0 & \text{if } z_0(x) < z \\ -E\kappa(x)(z - z_0(x)) & \text{if } z < z_0(x) \end{cases}$	(1)
	The normal force and the moment equations of equilibrium are given by	
	$N = \int_{-\frac{h}{2}}^{z_0} E\kappa(x)(z - z_0(x))vdz$	(2)
	$F(\ell - x) = -\int_{-\frac{h}{2}} E\kappa(x)(z - z_0)vzdz$	(3)
	Solving equations (2) and (3) the nonlinear cross-section and the curvature is obta	ined by
	$z_0(x) = h - 3\frac{F(\ell - x)}{N}$	(4)
	$\kappa(x) = \frac{8N^3}{9E\nu[Nh - 2F(\ell - x)]^2}$	(5)
	The length of the nonlinear zone is obtained from equation (4) under the condition b	
	$z_0(x_P) = \frac{n}{2}$	
	$x_P = \ell - \frac{Nh}{6F}$	(6)
	The nonlinear zone of the supported cross-section is also obtained from equation (4)
	$z_0(0) = h - 3\frac{F\ell}{N}$	(7)
	Substituting equation (4) and (5) to equation (1) under the conditions $x_c = 20$	cm and
	$z = -\frac{1}{2}$ the maximal compressive stress at the supported end is obtained by:	
	$\sigma\left(x_{c},-\frac{n}{2}\right) = -E\kappa(x_{c})\left(-\frac{n}{2}-z_{0}(x_{c})\right)$	(8)

In the linear zone (S3 section)	
The stress distribution is given by	
$\sigma(x,z) = -E\kappa(x)z$	(9)
The moment equation of equilibrium is given by	
$F(\ell - x) = -\int_{-\frac{h}{2}}^{z_0} E\kappa(x)zvzdz$	(10)
Solving equation (9) the curvature is obtained by	
$\kappa(x) = \frac{12F(\ell - x)}{Eh^3v}$	(11)
Integrating equations (5) and (10) two times the deflection is obtained by	
ℓx	

$$e_z(l) = \int_0^t \int_0^x \kappa(\xi) d\xi \, dx \tag{12}$$