TABLE OF CONTENTS

1. BEAM MODEL 5
2. FRAME MODEL 29
3. SLAB MODEL 63
4. MEMBRANE MODEL 103
4.1. GEOMETRY DEFINITION USING PARAMETRIC MESH 103
4.2. GEOMETRY DEFINITION USING DOMAINS 112
5. SHELL MODEL 127

1. BEAM MODEL

Objective The objective of this design example is to determine the internal forces, longitudinal reinforcement and shear links of the two-span continuous reinforced concrete beam illustrated below. The loads will be presented subsequently.

The cross-section is uniform along the beam: $400 \mathrm{~mm} * 720 \mathrm{~mm}$ rectangle shape. The beam is analysed according to Eurocode 2 standard.

Start AxisVMX4 by double-clicking on AxisVMX4 icon in its installation folder, found in Start - Programs menu.

Create a new model by clicking on New icon. In the dialogue window replace Model file name with 'beam', select Eurocode from Design codes and set Unit and formats to EU.

If necessary, enter the name of Project and designer (Analysis by) at Page header. Company logo also can be uploaded. This set page header will appear on the print image and documentation.

Click $\mathbf{O K}$ to close the dialog window.
Check the view (workplane) of the model when starting a new model. On the left side of the main window find Views icon, open it with moving the cursor over the icon and select \boldsymbol{X} - \boldsymbol{Z} view. The actual view is presented by the global coordinate system sign at the left bottom corner of the main window.

The global coordinate system can be changed during modelling, several local coordinate systems or workplanes can be set. The directions of global coordinate system are marked with capital letters ($\boldsymbol{X}, \boldsymbol{Y}$ or \boldsymbol{Z}). Please note that gravity force acts in $-\boldsymbol{Z}$ direction according to the default settings, but it can be modified by the user.

Select Elements tab to define geometry and structural properties of the beam. On the tab the icons of

Geometry Elements \mid Loads \mid Mesh \mid Static \mid Buckling \mid Vibration \mid Dynamic \mid R. C. Design \mid Steel design \mid Timber design

Horizontal beam

Cross-section editor

표

By clicking on Draw objects directly icon, brings up the following window:

Click on Horizontal beam icon (the second one on the left among the top row icons). Choose it even if this is the active one because of the sequences of steps. The following dialogue panel shows after clicking:

Warning

! No element cross-section defined.

- Browse cross-section libraries...

Cross-section editor

```
            OK
```

Select Browse cross-section libraries and click on OK.

The following, Cross-section editor window shows after clicking:

Rectangular shape

In the window find and click on Rectangular shape icon:

Enter $\mathbf{7 2 0}$ for height ($\boldsymbol{h}[\mathbf{m m} \boldsymbol{=}=$) and click on Place button. (The \boldsymbol{b} size of the rectangle shape is equal to the default value, so it does not have to be overwritten now.) Click anywhere in the workspace to place the cross-section. The following result can be seen:

Notes: Stress calculation points are automatically placed at the corners and at the centre (please see numbering 1..5). Stress is calculated only in these predefined points. These points can be modified or cleared or more points can be added. In our analysis there is no need for these points because the longitudinal reinforcement is calculated directly from internal forces.

By clicking on $\mathbf{O K}$ shows a dialogue panel asking for the name of the defined cross-section:

Click on $\mathbf{O K}$ to close the panel.
The following message shows up:

> Warning
> No element material defined.
> Browse material library...

By clicking on $\mathbf{O K}$ shows the following window:

Material Library Import - Eurocode					\square	\times
Design code	Materials		C25/30	\square		
(t) CSA S6-06 [Rev. 2010 ^	S320GD+Z275	\wedge	Type	Concrete		
- DIN (German)	S350GD+Z275		—	Isotropic		
Đ Eurocode	$\mathrm{C} 16 / 20$		$\mathrm{E}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	31500		
†- Eurocode [A]	C20/25		v	0.20		
†- Eurocode [B]	C25/30		$\alpha_{\top}\left[1 /{ }^{\circ} \mathrm{C}\right]$	1E-5		
†- Eurocode [CZ]	C30/37 C35/45		$\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	2500		
Eurocode [D]	C45/45 C40/50		$\mathrm{f}_{\mathrm{ck}}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	25.00		
(t) Eurocode [FIN]	C45/55		Y_{c}	1.500		
(T) Eurocode [H]	C50/60			1.00		
(') Eurocode [NL]	C14		$\alpha_{c c}$	1.00		
†- Eurocode [PL]	C16		ϕ_{t}	2.00		
Eurocode [RO]	C18					
¢-Eurocode [SK]	C20					
Eurocode [UK]	C24					
M MSZ (Hungarian)	C27				OK	
+ NBCC 1995 v	C30					
< >	C35	\checkmark			Cancel	

Roll down in the list of Materials by using the vertical sliding bar (or simply roll down the mouse wheel) and select C25/30, then click on $\mathbf{O K}$ to close the window.

Reference
Leaving the references on auto option, the local \boldsymbol{x} axis of the beam will be pointed in the direction of the beam and the local \boldsymbol{z} axis will be in the vertical plane.
The setup panel shows the following:

Beam polyline

Nodes in Relative coordinate system

On the panel, select Beam polyline function and draw the centre line of the beam.
To define the axis line, there are several options: it can be drawn graphically in the workspace or can be directly defined by specifying coordinates.

Geometry definition using coordinates:
In our example the axis of the beam is defined by drawing two lines between the three supports. The coordinates can be set in the Coordinates panel which can be found in the bottom right corner of the screen. The coordinates can be specified relative to global and relative origins. The relative origin is symbolized by a blue cross (rotated 45 degrees) in the workspace and it stands in the endpoint of the previously defined element. It can be relocated by moving the cursor to the desired point and pressing Insert button. When starting a new model, the relative origin always stands in the origin of the global coordinate system.

If \boldsymbol{d} button is pressed on the Coordinates panel the values can be given relative to local origin ($\boldsymbol{d} \boldsymbol{X}, \boldsymbol{d} \boldsymbol{Y}$, etc...). If \boldsymbol{d} button is not activated one could specify coordinates in the global system.
In our example relative coordinates are used. The local origin is now in the origin of the global system. To determine the starting point of the line ($\boldsymbol{X}=\mathbf{0}, \boldsymbol{Y}=\mathbf{0}, \boldsymbol{Z}=\mathbf{0}$), press \boldsymbol{x} button, then the cursor jumps to the field of \boldsymbol{x} coordinate on the Coordinates panel. Overwrite the highlighted actual value with $\boldsymbol{0}$.

After press \boldsymbol{y} button and enter $\mathbf{0}$. Similarly, specify \mathbf{z} value, finally close the input with Enter key.
To specify the other two points, hit the buttons in the following order:

X	12	y	0	Z	0	$<$ Enter>
X	10	y	0	Z	0	$<$ Enter>

after press mouse right button and from the quick menu select Cancel to finish the drawing process. Press Esc twice to exit from the command of object drawing (Draw objects directly).

To bring up the Zoom icon bar, move the mouse on Zoom icon (in the icon bar on the left side of the main window). It contains six icons. Select the third icon (Zoom to fit). This function scales the drawing of the model to fit the graphic area. This function can be activated even if pressing Ctrl-W or double clicking on mouse wheel.

An alternative way of zooming is to press + and - on numerical keypad.

As a result, on the following screenshot the axis of the beam element (blue line) and the contour view of the cross section (yellow lines) can be seen:

Geometry check \#,

Click Geometry check icon on the Geometry tab to filter the errors in geometry. In Geometry check panel, the maximum tolerance (distance) can be specified to merge nodes.

After the geometry check a summary of actions shows:

Setting perspective view 1

Check the perspective view of the beam. Click on Perspective icon on the left icon bar
In Window menu, Perspective settings panel can be activated, if it is checked. On the panel the parameters of perspective view can be modified and the model can be rotated.

The actual view can be rotated with moving of mouse when $\boldsymbol{A l t}+$ mouse wheel pressed.

By closing the perspective panel, the view mode is preserved.

Display options

Zoom to fit

Nodal support

 दलेClick on Display Options icon for showing local coordinate system of the elements, node numbering, graphical symbols, etc... Display options menu can be activated more quickly by pressing right mouse button and selecting the last menu row on the panel. On Symbols tab, in Local Systems group check Beam box. On Labels tab check Cross-section name in Properties group.

By closing window with $\mathbf{O K}$ button, the sign of local coordinate system of the beam and the name of the cross-section is shown on the element. Moving the cursor near the reference line of an element, some properties of the element are also visible in the hint: number of the beam, number of start and end point, the length of the beam, material, the name of the cross-section and the \boldsymbol{z} reference (auto or user defined)

Change view from perspective to \boldsymbol{X} - \boldsymbol{Z} plane.
Click on Zoom to fit icon for better visibility.

Staying on Elements tab, click on Nodal support icon and select the inner node, then click OK. In the window that appears, stiffness of the support in each direction can be set in different ways: the individual components can be defined in the global system, reference direction can be adapted or can be set relative to a beam/rib or edge. Select global direction and set support stiffness. $\boldsymbol{R x}, \boldsymbol{R y}$ and $\boldsymbol{R z}$ are the components of translation stiffness. The default stiffness value is $1 \mathrm{E}+10[\mathrm{kN} / \mathrm{m}]$ for fixed and 0 value for free to move in a given direction.
Rxx, Ryy and Rzz are the components of rotational stiffness. The default stiffness value is $1 \mathrm{E}+10$ $[\mathrm{kNm} / \mathrm{m}]$ for fixed and 0 value for free to rotate around a given direction. Set rotational stiffnesses and $\boldsymbol{R y}$ component to $\mathbf{0}$ and leave default values ($\mathbf{1 E + 1 0}[\mathbf{k N} / \mathbf{m}]$) for $\boldsymbol{R x}$ and $\boldsymbol{R z}$ components.

Click on $\mathbf{O K}$ to apply settings.

Select the other two nodes and set the stiffness components of the support as above, but create a rolling vertical support as follow:

If the support conditions are set correctly, the given non-zero components of the support are indicated by brown symbol on the screen.

Loads
To apply loads and support movements select Loads tab.

```
Geometry \(\mid\) Elements Loads \(\mid\) Mesh \(\mid\) Static \(\mid\) Buckling \(\mid\) Vibration \(\mid\) Dynamic \(\mid\) R.C. Design \(\mid\) Steel design \(\mid\) Timber design
```


Load cases and load groups

4!

Various loads and support movements should be separated into load cases. Click on Load cases and load groups icon. The following window shows:

The software automatically generates load case ST1 which can be seen in the list on the left. Click on the name of ST1 and rename it to SELF WEIGHT. Then click on OK button to go back to model space. The last edited load case (named SELF WEIGHT) will be the active case, this can be checked on Status panel in the top left corner of the screen.

Display options

Load along line elements

Load cases and load groups

Click on Display options icon. On Symbols tab, unselect the followings: Object contours in 3D, Crosssection shape in Graphics symbols group, Beam box in Local Systems group. On Labels tab, unselect Cross-Section Name in Properties group.

Click on Self weight icon then select all elements with $\boldsymbol{A l l}$ (*) button. By clicking on $_{\boldsymbol{O} \boldsymbol{K} \text {, a blue dashed }}$ line can be seen above the beam element which indicates the self weight of the element. Gravitational acceleration can be set in Gravitation option (Settings/Gravitation). As a default setting gravity acceleration is $9.81 \mathrm{~m} / \mathrm{s}^{2}$ and acts in $\boldsymbol{- Z}$ direction.

Open Load cases and load groups window again and click on Static icon in Add group. Create load cases with names LIVE LOAD 1, LIVE LOAD 2 and SUPPORT MOVEMENT. Click on LIVE LOAD 1 then close window with $\mathbf{O K}$.

Click on Load along line elements icon and select beam on the left side then click $\mathbf{O K}$. The following window shows up:

Uniformly distributed load will be defined on the beam relative to the global system. Type in - $\mathbf{1 7 . 5}$ into fields $\boldsymbol{p}_{\mathbf{Z 1}}$ and $\boldsymbol{p}_{\mathbf{Z 2}}$ then confirm with $\mathbf{O K}$. The negative value means that the load acts downward, in negative direction.

After clicking on down arrow next to Load cases and load groups icon, the following list shows up.

The list contains all the load cases defined and the actual one is highlighted with blue background. Select load case LIVE LOAD 2 with mouse or arrow keys.

With the same method, apply $-\mathbf{1 7 , 5} \mathrm{kN} / \mathrm{m}$ (in \boldsymbol{Z} direction) line load on both beams.

Support displacement

Load
combinations

Create new ULS (ultimate limit state) load combination by clicking on New row icon. Load factors for each load cases must be set. Set load factors as follows:

1. Load combination (Co.\#1):

SELF WEIGHT	$\begin{aligned} & 1.3 \\ & 5 \end{aligned}$	<Tab>	
LIVE LOAD 1	$\begin{aligned} & 1.5 \\ & 0 \end{aligned}$	<Tab>	
LIVE LOAD 2	0	<Tab>	
SUPPORT DISPLACEMENT	$\begin{aligned} & 1.0 \\ & 0 \end{aligned}$	<Tab>	Type in all these values to cells then create another ULS load combination with name Co.\#2, the factors are as follows:
SELF WEIGHT	$\begin{aligned} & 1.3 \\ & 5 \end{aligned}$	<Tab>	
LIVE LOAD 1	0	<Tab>	
HASZNOS 2	$\begin{aligned} & 1.5 \\ & 0 \end{aligned}$	<Tab>	
SUPPORT DISPLACEMENT	$\begin{aligned} & 1.0 \\ & 0 \end{aligned}$	<Tab>	Create the third load combination setting SLS Quasipermanent one with the following factors:

SELF WEIGHT	1.0	＜Tab＞	
	0		
LIVE LOAD 1	0	＜Tab＞	
LIVE LOAD 2	0.6	＜Tab＞	
	0		The following table shows after data input：
SUPPORT DISPLACEMENT	0	＜Tab＞	The

Remark：the cells are colored by different tone．These tones indicate differences between the specified values for better visibility．For more information please see User＇s manual．
Click on $\mathbf{O K}$ to finish．

Mesh

The beam should be divided into parts（line meshing）．（The type and number of the longitudinal rein－ forcement can be adjusted to the parts only．）If necessary，the meshing of line elements can be deleted or modified later．Removing a mesh does not delete loads and properties assigned to the line element．
Click on Mesh tab and select Meshing of line elements icon，that is the only active function now on this tab．

Geometry	Elements	Loads	Mesh	Static	Buckling		ibration
\cdots－	14	哲	泮\|	少	XI 爱瞥		

Firstly，select the beam element on the left side and type in value 12 in field Division into \mathbf{N} seg－ ments．

After select the beam element on the right side and divide it into $\mathbf{1 0}$ parts with the same method above．

In the bottom right corner between Speed buttons find Mesh display on／off icon．With this icon the visibility of mesh can be switched on or off．Ask for a spatial view，the following shows up：

Static Click on Static tab for running analysis:

Linear static analysis

Nodal degrees of freedom

Click on Linear static analysis icon to run analysis. Before calculation, the software warns to save the model if it was not saved previously.

The analysis starts with a warning message. The nodal degrees of freedom must be set, that have not been done before. In this case the software examines the model and offers a possible setting based on the model and its geometry.

In our model the beam is not fixed in \boldsymbol{Y} direction, on the other hand it is free to rotate around \boldsymbol{X} direction. Please note: the software only filters out the basic faults in the data input, but cannnot find every fault beforehand that can cause problem in the stiffness matrix.

On the dialogue panel check Save model with these settings and click Yes to accept suggested settings (Beam with multiple support in X-Z plane).

Remarks: on Elements tab with Nodal degrees of freedom function the nodal DOFs can be set.
For all the nodes the following setting should be done: $\boldsymbol{e}_{\boldsymbol{x}}-$ free, $\boldsymbol{e}_{\boldsymbol{y}}$ - constrained, $\boldsymbol{e}_{\boldsymbol{z}}$ - free, $\mathbf{a}_{\boldsymbol{x}}$ - constrained, $\mathbf{Q}_{\mathbf{y}}$ - free, $\mathbf{Q}_{\mathbf{z}}$ - constrained. This is the same as default settings for $\boldsymbol{F r a m e}$ in $\boldsymbol{X} \mathbf{- Z}$ plane, see in list above the components.

The calculation continues and finishes with the following message:

X0 (x64) Linear analysis of beam.axs	-
Analysis of beam.axs completed.	
\square Close if completed	
Messages	OK
Statistics	\ll

Click on Statistics to see more information about the analysis:

Static Close window, click on OK button. The software activates the result display: SELF WEIGHT load case is active, the vertical deformation $\mathbf{e z}[\mathbf{m m}]$ is shown on the screen in Isosurfaces 2D display mode. Note, the deformation calculated in linear analysis are not equal to the real deformations of the reinforced concrete beam. After defining the reinforcement of the beam, nonlinear analysis must be done.

Result display parameters

The following window shows up after clicking on Result display parameters icon and do the following settings:

Select SELF WEIGHT load case and result component Displacement, ez [mm]. Change Display mode to Diagram. If we leave Display shape on Undeformed the results are drawn to undeformed model. Check Lines and Nodes boxes at Write Values to setting.
After click on $\mathbf{O K}$ the following diagram will be displayed:

The scale of the diagram can be given or set at the field next to the Display mode.
Check deformations in all load cases and combinations. Most of the errors in input data can be filtered out with thorough inspection. To do this, click on the list right next to Result display parameters icon. Select the first load combination Co.\#1.

Min, max values

To find minimal and maximal values click on Min, Max Values icon. The following window shows up:

Select $\boldsymbol{e z}$ and click on $\mathbf{O K}$. The result panel shows the highest negative deformation and its position, after clicking on $\mathbf{O K}$ the highest positive deformation is shown. Click again on $\mathbf{O K}$ to close.

Click on the second drop-down list (next to load case list) and appropriate result component can be selected from this list: displacement, internal forces, stresses, etc... Select internal forces My $[k N m]$ firstly for the first and second load combination (Co.\#1, Co.\#2).

| Geometry \| Elements | | Loads ${ }^{\text {Mesh }}$ | Static | Buckling | Vibr | tion | Dynamic | R. C. Desi | Stee | Timber de | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | H. SELF WEIGHT | | | \checkmark | | | | | \checkmark | | $\stackrel{\rightharpoonup}{*}$ |
| | | | | | | | | | | | |

Co.\#1 - My [kNm]:

Co.\#2 - $\boldsymbol{M} \boldsymbol{y}[\mathrm{kNm}]$:

R. C. design To design the reinforcement of the beam, click on R. C. design tab:

Beam reinforcement design
$\stackrel{\text { 目 }}{\rightleftharpoons}$

Click on Beam reinforcement design icon then select all the beam elements with All (*) button and finally click on OK. In Beam reinforcement parameters window set the followings:

Reinforcement parameters

On Cross-section tab the cross-section of the beam can be modified if it necessary, but please note that the internal forces will be recalculated only if a new static analysis is done. So, this option should be used only in justified cases.
The material of Concrete can be modified, the structural class and the maximum aggregate size of concrete can be set. Leave the latter at the default setting of 16 mm .
Environment classes and concretes covers must be specified on all four sides of the cross-section. In our example select XC1 environment class on every side. By clicking on the link symbol right to the environment classes will set the same environment class on all sides. Apply minimum cover to calculate the concrete cover automatically.
The reinforcement parameters can be set: stirrup parameters are on the left, parameters of longitudinal rebars are on the right. Stirrup is displayed in green, rebars at the corners are red, other longitudinal rebars are blue, their diameter at the top / bottom ($\varnothing t, \varnothing b$) can be set separately.
Set B500B material for the link and longitudinal rebars as well. Set diameter of link to $\mathbf{1 0} \mathbf{~ m m}$, the step of stirrup spacing should be the default value of $\mathbf{5 0} \mathrm{mm}$.
Set 25 mm for the diameter of bottom longitudinal rebars, but the top rebars at the corners should be 16 mm , for the internal top bars set $\mathbf{2 5 m m}$.
Maximum number of applied rebar schemes limits the number of different rebar distribution schemes applied along the beam (number of top and bottom distribution can be set separately).

On Parameters tab set the followings:

Checking Shear force reduction at supports allows the application of shear force reduction methods according to the current design code, but in our example, do not switch on this function.
Eurocode 2 allows specification of the $\boldsymbol{\theta}$ angle of the concrete compression strut, leave this on the default value of 45°.
Checking Increase reinforcement according to limiting crack width the maximum allowed crack width values can be entered. In this case the program increases the top / bottom reinforcement to reduce the crack width under the specified value. To perform cracking analysis the load duration must be specified.
For Load duration set option Long term ($\mathrm{kt}=0.4$).
Set $\boldsymbol{L} / \mathbf{2 5 0}$ criteria for the allowed deflection of Beam. Sign \boldsymbol{L} represents the beam length. This check will be performed only if the actual concrete grade and cross-section is set.
Take into consideration of concrete tensile strength in Nonlinear analysis.
Seismic load was not defined, so do not overwrite seismic coefficient, leave the default value of 1.

After click on $\mathbf{O K}$ to close window. The software shows a warning message as follows.

Warning
Reinforcement amounts must be calculated form ULS combinations, while cracking analysis requires SLS combinations. Therefore to perform a full check of reinforced beams it is recommended to select an apropriate envelope or critical combination from the list. \square Do not display this message\quad OK

After taking notice of the warning, Beam reinforcement window in the background becomes active.

The following diagrams are displayed on Design tab:

- schematic view of the beam model with dimensions
- design moment My,Ed. If Envelope Min, Max (All ULS) is selected in the drop-down list, the envelope moment curves are displayed. The blue curve with thick line represent the offset design curve in accordance with national design code.
- the third figure presents the required top/bottom reinforcement.
- the fourth figure shows the envelope of design shear force
- the last figure represents the required shear reinforcement and stirrup spacing.

After clicking on Calculated beam reinforcement tab, the following diagrams can be displayed: Envelope of reinforcement (As), cracking (wk), moment resistance (MyRd), maximum shear force (VzRd), relative deflection (ez,rel), absolute deflection (ez,abs). To display other types of results and diagram set the Display parameters.

When determining the distribution of longitudinal reinforcement, the given parameters of rebars and the line meshing (see before) are considered.

Result display parameters

By clicking on Result display parameters button the following panel shows up, where you can optionally choose the diagrams you want to see.

By closing the Result display parameters window, on the Actual beam reinforcement tab the calculated reinforcement can be applied as actual reinforcement. Now, click on that tab and apply the offered reinforcement.

In the upper figure, pink coloring indicates the required reinforcement in case of the selected load combination (or load case). The blue coloring indicates the actual reinforcement (minimum reinforcement in the corners of the link). The vertical dashed lines represent the meshing of the beam (see before), the number of rebars can be set for each section. To select a line section, click on the sections within the area of the section. Additional sections can be added to the selection by holding down the right mouse button and dragging the mouse in the right direction or pressing Shift.

Apply calculated reinforcement $\stackrel{\Omega}{\square}$

The number of the longitudinal reinforcement can be modified. Edit boxes allow changing the number of top and bottom rebars in the selected elements. The - and + buttons decrease/increase the number of rebars.

	Corner rebars
\uparrow	+Longitudinal rebars
2ø16	$-\square+\emptyset 25$
$\downarrow 2 \emptyset 25$	$-\square+\emptyset 25$

Select Envelope Min, Max (ULS) combination in the dropped-down list next to Apply calculated reinforcement icon. The following result will show up:

The software generates the actual reinforcement followings the shape of the internal forces by increasing or decreasing the number of rebars.

If Co.\#3 (SLS Quasipermanent) load combination is selected in the drop-down list, the deflection and crack width can be queried.

\begin{tabular}{|c|c|}
\hline :ement \& Actual beam reinforcement \\
\hline \[
\stackrel{\Omega}{\square}
\] \& (+) Co.\#3 (SLS Quasipermanent) \\
\hline \begin{tabular}{l}
ial rebz \\
\hline \\
7 \\
7 \\
+
\end{tabular} \& \begin{tabular}{l}
Linear analysis \\
I.. SELF WEIGHT \\
II. LIVE LOAD 1 \\
in LIVE LOAD 2 \\
in SUPPORT DISPLACEMENT \\
(+) Co.\#1 (ULS) \\
(+) Co.\#2 (ULS) \\
(+) \\
Co.\#3 (SLS Quasipermanent) \\
Envelopes

Envelope (Default)

- Envelope Min,Max

Envelope (Load cases)

- Envelope Min,Max
Envelope (Load combinations)

- Envelope Min,Max
Envelope (All ULS)

- Envelope Min, Max
Envelope (ULS)

- Envelope Min,Max
Envelope (All SLS)

- Envelope Min,Max
Envelope (SLS Quasipermanent)

- Envelope Min, Max
\end{tabular}

\hline
\end{tabular}

Sets display parameters 믐뭄

Nonlinear static analysis

By clicking on Display parameters icon select only the required diagrams, the others should be switched off. Switch on the display of Model, Cracking and Absolute deflection diagrams.

By clicking on $\mathbf{O K}$, the following results are displayed considering actual reinforcement.

The above results for deflection are results of an approximate calculation (creep is approximated but without considering the effect of shrinkage). A more accurate calculation can be made by nonlinear static analysis. This can be done by closing the Beam reinforcement window and going back to Static tab. Click on Nonlinear static analysis icon, the following screen will appear.

The only purpose of the nonlinear analysis is to study the deformation of the structure, so check Co.\#3 (SLS Quasipermanent) load combination in Load cases list. Check Use reinforcement in calculation, and considering Creep and Shrinkage. Set the other parameters according to the above window. Start analysis by pressing $\mathbf{O K}$ button, the following shows up:

While running, information about the current steps of the calculation can be seen in the Messages list. In the Iterations window, the actual convergence of the calculation is presented during each increment.

The calculation finishes with the following message:

Finishing the calculation, the result of the nonlinear analysis can be found in the drop-down list.

Display the deflection curve of the beam as a result of nonlinear analysis (Displacement - ez [mm]). Set Diagram display mode, its scale can be freely adjusted (field next to Display mode)

Geometry	Elements	Loads	Mesh	Static	Buckling	Vibration	Dynamic	R. C. Design	Steel design	Timber d				
	冒ニ	(+) Co.\#3 (SLS Quasipermanent) [1] (1.C *					eZ [mm]	\checkmark	Diagram	\checkmark	$30 \quad \stackrel{\rightharpoonup}{\nabla}$	$\mathrm{x}_{\text {min }}^{\text {max }}$,

The following result is obtained from the nonlinear analysis:

2. FRAME MODEL

Objective

Analyse the following frame and design column A1 and its pad footing:

Consider IPE 400 rolled steel cross-section for horizontal beam elements and HEA 280 for columns. The cross-section of bracing elements is O194.0 x 5.0 SV. Use material S235 and apply Eurocode standard for the design.

Start AxisVMX4 by double-clicking on AxisVMX4 icon in its installation folder, found in Start - Programs menu.

Create a new model by clicking on New icon. In the dialogue window replace Model file name with 'frame', select Eurocode from Design codes and set Unit and formats to EU.

Starting workplane also can be set on the left in this window. Change workplane to \boldsymbol{X} - \boldsymbol{Y} Top view. This setting can also be done using Choosing view icon on the editing interface.
Click $\mathbf{O K}$ to close the dialog window.

The geometry of the frame will be created by using of editing tools. This can be done in several ways. The geometry can be defined by drawing line elements, then structural elements and material properties can be assigned to those. In the following, the faster and complex Draw objects directly function is presented.

Define of geometry Select Elements tab to bring up Elements toolbar.

Elements

Draw objects directly

Firstly, the columns will be defined. By clicking on Draw objects directly icon shows following window:

Click on Column icon even it is already selected.
The following window shows after clicking:

Select Browse cross-section libraries... and click on OK. The following window shows up:

Roll down in the list of Cross-section tables by using vertical sliding bar (or roll mouse wheel) and select HE European wide flange beams, and click on HEA $\mathbf{2 8 0}$ A. Finish with OK.

The following message shows up:

Roll down in the list of Materials by using vertical sliding bar (or roll mouse wheel) and click on S235, then click on $\mathbf{O K}$.

The selected cross-section and material are displayed in the Drawing objects directly window.
Set Height to 3.5 m in the window:

Note: in the window several parameters can be set which are not mentioned here. End releases can also be specified or the local coordinate system of the element can be modified. In our example, we use default setting for these. (The end releases of an element are fixed by default settings.)

Change view to top view ($\boldsymbol{X}-\boldsymbol{Y}$ plane), if it is not the actual view. Note: if necessary, view can be modified with this icon, even if an editing command is active.

Column

Click on Column icon below to place the columns.
Click on the following positions in the graphical interface:
$(0 ; 0)-(6 ; 0)-(0 ; 5)-(6 ; 5)-(0 ; 10)-(6 ; 10)$.
The next figure shows the result, the columns in $\boldsymbol{X} \boldsymbol{-} \boldsymbol{Y}$ plane view:

Horizontal beam

Cross-section library import

Click on Horizontal beam icon.

Click on Cross-section row in the window, then on Load from database icon. Select IPE 400 from group IPE European I-beams.

Close window with $\mathbf{O K}$, then the selected cross-section is now displayed on the panel:

Beam polygon

Beam

Cross－section library import

Filter 븥틈 배틉

Activate Beam polyline icon，then click on top of columns and draw the axis of beams as a polyline． Draw the perimeter beams first，then press Esc to cancel drawing．Finally，draw the inner beam as well． The next will be the result：

Change to Beam function on Draw objects directly panel．

Click on Cross－section row in the window，then on Cross－section library import icon．Select Pipes， but geographical region must be change to view also Hungarian pipes in the list．Activate Filter func－ tion and select also Hungarian shapes．Select o Hungarian pipes under Pipes group in the list of Cross－section tables，then find and select 0194.0×5.0 SV in Cross－section list：

Filtering		
Geographical regions \square Brazil Z Canada China V Europe \checkmark Hungary Netherlands Romania Russia Slovakia Sweden United States Unknown	QManufacturer DUNAFERRIINDABSWEDSTEEL	
Filter：Europe，Hungary	OK	Cancel

X\＆Cross－Section Library import						－	$\square \times$
Library｜Parametric shapes	O Hungarian pipes					Parameters	
Thin｜Thick －I II I OOOII ［ ］［］L 〕 T L 」 ᄃ 十 \＃〉くへとッ…	Name	\wedge	Height［mm］	Width［mm］	$\begin{array}{r} A_{x} \\ {[m n} \end{array}$	h ［mm］	194.0 ＾
						b ［mm］	$\begin{array}{r} 194.0 \\ 5.0 \end{array}$
	O 133.0×18.0		133.0	133.0	$6 \wedge$	tf［mm］	5.0
	0133.0×20.0		133.0	133.0	7	Ax［ mm^{2} ］	2968.20
	O 159．0x 4.0 SV		159.0	159.0	1	Ay $\left[\mathrm{mm}^{2}\right]$	1485.70
	$0159.0 \times 4.5 \mathrm{SV}$		159.0	159.0	2	Az $\left[\mathrm{mm}^{2}\right]$	1485.84
	$0159.0 \times 5.0 \mathrm{SV}$		159.0	159.0	2	lx［mm ${ }^{4}$ ］	2.652518 E 7
	O 194．0x 4．0 SV		194.0	194.0	2	ly $\left[\mathrm{mm}^{4}\right]$	1.325998 E7
\boxminus Pipes O Dunaújvárosi Hungarian pipes O Hungarian pipes	$0194.0 \times 4.5 \mathrm{SV}$		194.0	194.0	2	lz $\left[\mathrm{mm}^{4}\right]$ $\mathrm{lyz}\left[\mathrm{mm}^{4}\right]$	1．325998E7
	$0194.0 \times 5.0 \mathrm{SV}$		194.0	194.0	2	I $\mathrm{l}\left[\mathrm{mm}^{6}\right.$ ］	0
	O 219.0×4.0 SV		219.0	219.0	2		
	$0219.0 \times 4.5 \mathrm{SV}$		219.0	219.0	3		
	O $219.0 \times 5.0 \mathrm{SV}$		219.0	219.0	3		
	$0219.0 \times 6.0 \mathrm{SV}$		219.0	219.0	4		\％
	O $245.0 \times 4.0 \mathrm{SV}$		245.0	245.0	3	－	＋－．．．．．
	$0245.0 \times 4.5 \mathrm{SV}$		245.0	245.0	$3 \vee$		
	＜			＞			
聿	No filtering			\＃			
Pipes／O Hungarian pipes							
0194.0×5.0 SV							
						OK	Cancel

Close window with $\mathbf{O K}$ ．

Beam polygon
\Perp

Draw polygon from the bottom node of $\boldsymbol{A 1}$ to the centre of beam in \boldsymbol{Y} direction as shown below:

then continue drawing to the bottom node of the next column.

Press Esc to close polyline function, then repeat previous steps to specify the bracing elements on the other side of the structure.

Translate / Copy $\overrightarrow{\Delta \Delta}$

Now, all the structure will be copied in \boldsymbol{Z} direction to define the upper storey. Activate Translate icon, select all the elements and in Translate window set the next:

Select Consecutive and None checkbox under Nodes to connect title. Click on bottom node of one of the column, then on the top of it, finally press Esc to close command.

The following will be the result:

Geometry check Click Geometry check icon to check the geometry of the frame, which can be on Geometry tab.
$\#_{\checkmark}$

In the window that appears, user can set maximum Tolerance for checking points and user may also request highlighting of nodes and elements found during checking.

After the geometry check，a report is displayed about the events：

Geometry check
Nodes deleted： 0
Lines deleted： 0 Surfaces deleted： 0

Zoom to fit

Rendered view

Select Zoom to fit from Zoom functions for better view．

Select Rendered view from View modes：

亘 四 田

The following will be displayed：

Display options 0

Activate Display options and uncheck Object contours in 3D on Symbols tab.

Display options				
Symbols	Labels	Switches		
Graphics symbols			Local systems	
\checkmark Node			\square Beam	
Trusses			$\square \mathrm{Rib}$	
\checkmark Beams			\square Virtual beam	
\checkmark Virtual beams			\square Surface	
\checkmark Ribs			\square Domain	
\checkmark Center of circle			\square Support	
\checkmark Domain			\square Spring	
\square Surface center			\square Gap	
\square Mesh			\square Link	
\checkmark Nodal support			\square Edge hinge	
\checkmark Line support			\square Load panel	
\checkmark Surface support				
\square Display footings			\square Loads	
\square Dimension lines			\checkmark Concentrated	
\square Detailed dimension lines			\checkmark Line	
\checkmark Springs			\checkmark Surface	
\checkmark Gap elements			\checkmark Temperature	
\checkmark Links			\checkmark Fire	
\checkmark Rigids			\checkmark Self weight	
\checkmark Diaphragm			\checkmark Other	
\checkmark Reference			\checkmark Load panel	
\square Cross-section shape			\checkmark Abutting wall	(for snow
\checkmark End releases			loads) / Edge	n corner
\checkmark Structural members			(for wind lo	
\square Reinforcement param.				
\checkmark Reinforcement domain			\square Load distributi	
\checkmark Mass			\square Derived beam	
			\square Moving load	
, Thickness reference points			\checkmark Transparent load diagrams	
			\square Object contour	
\checkmark Auto refresh				
\square Refresh all				
\square Save as default			OK	Cancel

Wireframe view

Change back to Wireframe view:

Elements
To create nodal supports change tab to Elements:
Geometry Elements \mid Loads \mid Mesh \mid Static \mid Buckling \mid Vibration \mid Dynamic \mid R. C. Design \mid Steel design \mid Timber design

Nodal support

Click on Nodal support icon and select bottom nodes of columns, then confirm with $\mathbf{O K}$. In the next window the stiffness can be set for the supports:

Set rotational stiffness components to $\mathbf{0}$ ，but leave translational stiffness on default value（ $\mathbf{1 E} \mathbf{+ 1 0}$ ），as shown below：

$\mathrm{R}_{\mathrm{X}}[\mathrm{kN} / \mathrm{m}]=$	$1 \mathrm{E}+10$	\checkmark
$\mathrm{R}_{\mathrm{Y}}[\mathrm{kN} / \mathrm{m}]=$	$1 \mathrm{E}+10$	\checkmark
$\mathrm{R}_{\mathrm{z}}[\mathrm{kN} / \mathrm{m}]=$	$1 \mathrm{E}+10$	\checkmark
$\mathrm{R}_{\mathrm{xXX}}[\mathrm{kNm} / \mathrm{rad}]=$	0	\checkmark
$\mathrm{R}_{\mathrm{Y}}[\mathrm{kNm} / \mathrm{rad}]=$	0	\checkmark
$\mathrm{R}_{\mathrm{Zz}}[\mathrm{kNm} / \mathrm{rad}]=$	d	\checkmark

then close window with $\mathbf{O K}$ ．

Loads
To specify the loads on the frame，change tab to Loads：

```
Geometry \(\mid\) Elements Loads \(\mid\) Mesh \(\mid\) Static \(\mid\) Buckling \(\mid\) Vibration \(\mid\) Dynamic \(\mid\) R. C. Design \(\mid\) Steel design \(\mid\) Timber design \(\mid\)
```


Load cases and load groups
․

Various loads should be separated into load cases．Click on Load cases and load groups icon to add new load cases．

Load groups and load cases				－\times
	Load case		Add	
	ST1			－1＊아웅
				严 罒
	Load group			E＊
	Ungrouped	\checkmark		$\stackrel{\underset{*}{*}}{\underset{*}{*}}$
	Eurocode			
	Load group			Add
				D
				回
				团
				앙
				Ξ
				生
				囪
\times Delete		Critical load group combinations．．．	OK	Cancel

In the window that appears, click on the name ST1 in the top left corner and rename it to LIVE 1. (ST1 is an automatically generated load case, which should be renamed in our example.) Close window with OK, then the previously edited load case (LIVE LOAD 1) is active. The actual load case is indicated on Info palette, shown below:

Code
Case : LIVE LOAD 1

Load along line elements向

Add line loads to all horizontal beams. Specify $\mathbf{5 0} \mathbf{~ k N} / \mathbf{m}$ to beams at lower level and $\mathbf{2 5} \mathbf{~ k N / m}$ to beams at upper level in $\boldsymbol{- Z}$ direction. Activate the Load along line elements function and select upper beams with selection rectangle.

Confirm selection with $\mathbf{O K}$, then in the following window set load parameters.

Set $\boldsymbol{p}_{\boldsymbol{Z 1}}$ and $\boldsymbol{p}_{\boldsymbol{Z 2}}$ to $\mathbf{- 2 5}$, then finish with $\mathbf{O K}$, then the load is indicated on the beam elements in cyan:

Display options 0

If the load intensity is not labelled automatically (this function is not active), then open Display options:

Display options				
Symbols	Labels	Switches		
Graphics symbols			Local systems	
\checkmark Node			\square Beam	
\checkmark Trusses			$\square \mathrm{Rib}$	
\checkmark Beams			\square Virtual beam	
\checkmark Virtual beams			\square Surface	
\checkmark Ribs			\square Domain	
\checkmark Center of circle			\square Support	
\checkmark Domain			\square Spring	
\checkmark Surface center			\square Gap	
\checkmark Mesh			\square Link	
\checkmark Nodal support			\square Edge hinge	
\checkmark Line support			\square Load panel	
\checkmark Surface support				
\square Display footings			\square Loads	
\square Dimension lines			\checkmark Concentrated	
\square Detailed dimension lines			\checkmark Line	
\checkmark Springs			\checkmark Surface	
\checkmark Gap elements			\checkmark Temperature	
\checkmark Links			\checkmark Fire	
\checkmark Rigids			\checkmark Self weight	
\checkmark Diaphragm			\checkmark Other	
\checkmark Reference			\checkmark Load panel	
\checkmark Cross-section shape			\checkmark Abutting wall	(for snow
\checkmark End releases			loads) / Edg	n corner
\checkmark Structural members			(for wind loa	
\square Reinforcement param.				
\checkmark Reinforcement domain			\square Load distribut	
\checkmark Mass			\square Derived beam	
			\square Moving load	
\checkmark Thickness reference points			\checkmark Transparent load diagrams	
			\square Object contours in 3D	
\checkmark Auto refresh				
\square Refresh all				
\square Save as default			OK	Cancel

In the window, select Labels tab and check Load value under Properties title:

Close with $\mathbf{O K}$, then load intensity will be displayed:

Load along line elements

Activate again Load along line elements and select lower beams, then confirm with $\mathbf{O K}$ and set $\boldsymbol{p}_{\boldsymbol{z 1}}$ and $\boldsymbol{p}_{\text {Z2 }}$ to $\mathbf{- 5 0}$.

Close function with $\mathbf{O K}$, the following will be displayed:

Load cases and load groups

```
I.!
```

Static load case

HH

Load along line elements

甶

Click on Load cases and load groups icon.

Add a new load case to the list by clicking on Static icon in New case top icon row, and rename it to WIND. After confirming with $\mathbf{O K}$, all loads predefined will 'disappear' because the active load case will be the newly defined one, as it is shown on Info palette.

Click on Load along line elements icon then select the rear two columns in the corner, as shown below:

then apply $\mathbf{6} \mathrm{kN} / \mathrm{m}$ line load in \boldsymbol{x} direction ($\boldsymbol{p}_{\boldsymbol{x} 1}$ and $\boldsymbol{p}_{\mathbf{X 2}}$). The same way, apply $\mathbf{1 2} \mathrm{kN} / \mathrm{m}$ to the central column in \boldsymbol{x} direction.

The next is the result:

Load combinations

Create load combinations on the basis of load cases. Using load combinations, load cases can be added together, combining them by various factors.
Activate Load combinations icon, the following window shows up:

Create new ULS (ultimate limit state) load combination by clicking on New row icon.
Assign the following factors to each load cases:

LIVE LOAD 1	1.50	<Tab>
WIND	1.50	<Tab>

Enter the values in the appropriate data field, then click $\mathbf{O K}$ to finish.

With this final step the data input has been finished.
Activate Display options and change to Symbols tab. Uncheck Node, Cross-section shape and Loads checkboxes then uncheck Load value on Labels tab.

Static

Click on Static tab for running analysis:

Linear static analysis

Click on Linear static analysis icon to run analysis, the following shows up:

Click on Statistics to see more information about the analysis.
Click on $\mathbf{O K}$ after analysis. Automatically Static tab is activated with ez [mm] vertical deformations for LIVE1 load case in Isosurfaces 2D view. To see results of other load combination, select combination Co.\#1 from drop-down list.

Loads	Mesh	Static	Buckling	Vibrat	
${ }^{\text {HIL LIV }}$	LOAD 1			\checkmark	ez
$\square \square$ Linear analysis					
H LIVE LOAD 1					
${ }^{\text {H }}$ H WIND					
(+) Co.\#1 (ULS)					
®-Envelopes					

Change results view from Isosurfaces 2D to Diagram:

Diagram	\checkmark
Diagram	
Section line	
Filled section line diagram	
Isolines	
Isosurfaces 2D	
None	

Change view to $\boldsymbol{X}-\boldsymbol{Z}$ plane!

The following will be displayed:

Parts Let us define parts to see only specified parts or elements of the entire model.
By clicking on Parts icon shows the following window:

Click on New icon and the following window enter $\mathbf{1}$ to the name data field, then close with $\mathbf{O K}$.

Select elements of the frame which will be in part name 1. The next figure shows how to select beam elements on the right side with selection rectangle.

Finish selection with $\mathbf{O K}$, then the defined part is added to the list in the window:

\begin{tabular}{|c|c|}
\hline $\underline{X 4}$ Parts \& \times

\hline $$
+\sharp \times Q \square+\pi
$$ \&

\hline \begin{tabular}{l}
\】 User-defined parts - \quad п 1
Logical parts
Materials
S 235 [34]
Cross-sections

HE 280 A [12]
IPE 400 [14]
O 194.0×5.0 SV [8]
Architectural model

Columns

HE 280 A

[12]
Beams

IPE 400 [14]
Other elements

0194.0×5.0 SV
\end{tabular} \& 1

2
3
4
5
6
7

\hline Parts
Logical parts
Auto refresh
Refresh all
Show non-visible parts grayed \&

\hline \square Save as default \&

\hline
\end{tabular}

By closing window with $\mathbf{O K}$, then the part with name $\mathbf{1}$ is created.
Change view $\boldsymbol{Y}-\boldsymbol{Z}$ side view!

Result display parameters

Click on Result display parameters icon, then check option Write values to - Lines checkbox in the window:

Close window with $\mathbf{O K}$, the min./max. results are displayed on the line elements:

Min, max values
To find location of maximum deformation use Min, Max values function. Click on icon and select one of the deformation components in the following window:

Confirm with $\mathbf{O K}$, the software shows the maximum negative value and its location as well:

After click on $\mathbf{O K}$, the result panel jumps to the maximum positive value showing its location.

Select Beam internal forces - Nx [kN] component from the drop-down list among result components.

The next figure shows the results for $\boldsymbol{N x}$ component:

Change result component to $\boldsymbol{M} \boldsymbol{y}$ to see the bending moment diagram:

Finally select $\boldsymbol{R z}$ component among Nodal support internal forces:

Steel design Change to Steel design tab to check the corner columns and optimize them.

Geometry \mid Elements \mid Loads \mid Mesh \mid Static \mid Buckling \mid Vibration \mid Dynamic \mid R.C. Design Steel design \mid Timber design \mid
(1) 冒二
(+) Co.\#1 (ULS)
$\rightarrow \mathrm{Nx}[\mathrm{kN}]$

Design parameters (V)

Firstly, design parameters should be assigned to the corner columns. Click on Design parameters icon, then select all the columns in the corners. Confirm selection with $\mathbf{O K}$ and specify the followings in the Design parameters window:

Set $\boldsymbol{K}_{\boldsymbol{y}}$ to $\mathbf{1 , 2 5}$-re, and select $\boldsymbol{A} \boldsymbol{u} \boldsymbol{t o} \boldsymbol{M} \boldsymbol{c r}$ method to calculate $\boldsymbol{M}_{\boldsymbol{c r}}$, and close window with $\mathbf{O K}$.
$\mathrm{N}-\mathrm{M}-\mathrm{V}$
Axial force-
Bending-
Shear

Select Analysis - N-M-V (Axial force-Bending-Shear) results from listbox among toolbar:

	tio	Dynamic	R. C. Design	Steel desig	Timber design
```Beam internal forces \(\mathrm{Nx}[\mathrm{kN}]\) Vy [kN] . Vz [kN] Tx \([\mathrm{kNm}]\) My [kNm] \(\mathrm{Mz}[\mathrm{kNm}]\) Beam stresses Critical utilization Limit states Analysis N-M-V (Axial force-Bending-Shear) [l N-M-Buckl (Axial Force-Bending-Flexural Buckling) [] N-M-LTBuckl (Axial force-Bending-Lateral torsional buckling) [] Vy (Shear(y)) [] . Vz (Shear(z)) [] .. Vw-M-N (Web shear-Bending-Axial force) [] Resistances```					

The next figure shows the result for the selected analysis:


Utilization
Select Limit states - Utilization ULS [ ] from the same listbox. The following diagram will be displayed:


The lower right column is not safe for the load combination, because the maximum utilization (1.131) exceeds value 1. The design error will be corrected by using Optimization function.

Click on column A1 and see the results of all checks:


Design calculations

Click on Design calculations button to see detailed calculations which can be printed or added to the Documentation as well:


STEEL MEMBER DESIGN
Design member 4
Nodes: 3-4
Code: Eurocode
EN 1993-1-1:2005 + AC:2009, EN 1993-1-5:2006
Material: S 235
Cross-section: HE 280 A
Load case: Co \#1
Coefficient for seismic forces: $\mathbf{1 . 0}$
Section class: 1 (Plastic design)

## 1. Axial force-Bending-Shear

EN 1993-1-1: 6.2.1. 6.2.8. 6.2.9
Critical section: $x=1.00 \cdot L=1.00 \cdot 350.00=350.00 \mathrm{~cm}$
$N_{E d_{11}}=-554.92 \mathrm{kN} V_{y, E d_{11}}=1.69 \mathrm{kN} V_{z, E d_{11}}=50.18 \mathrm{kN} M_{y, E d_{11}}=17244.99 \mathrm{kNcm}=172.450 \mathrm{kNm} M_{z, E d_{11}}=-471.66 \mathrm{kNcm}$
$=-4.717 \mathrm{kNm} M_{x, E d_{11}}=-5.01 \mathrm{kNcm}=-0.050 \mathrm{kNm}$
$\eta_{N M V_{P V}}=\eta_{M \mathrm{~V}}=75.2 \% \quad$ passed

## 2. Axial Force-Bending-Flexural Buckling

EN 1993-1-1: 6.3.3, Annex B: Method 2
Critical section: $x=1.00 \cdot L=1.00 \cdot 350.00=350.00 \mathrm{~cm}$
$C_{m y}=1 \geq 0.4$ Table B. 3
$C_{m z}=\max \left(0.2+0.8 \cdot \alpha_{m z}, 0.4\right)=\max (0.2+0.8 \cdot 0.371,0.4)=0.497 \geq 0.4 \quad$ Table B. 3
$f_{y y}=\min \left(\lambda_{y}{ }^{*}-0.2 ; 0.8\right)=\min (0.39-0.2 ; 0.8)=0.193$
$f_{z z}=\min \left(2 \cdot \lambda_{z}{ }^{*}-0.6 ; 1.4\right)=\min (2 \cdot 0.53-0.6 ; 1.4)=0.465$
$k_{y y}=C_{m y} \cdot\left(1+f_{y y} \cdot \frac{\left|N_{E d_{11}}\right|}{\frac{\chi_{y} \cdot N_{p l, R d}}{\gamma_{M n}}}\right)=1 \cdot\left(1+0.193 \cdot \frac{|(-554.92)|}{\frac{0.9289 \cdot 2286.25}{1}}\right)=1.05$


Close report with $\mathbf{O K}$, and click again on $\mathbf{O K}$ to close Steel Design member window.
To view the full model, click on Parts icon in the vertical toolbar on the left side. In the window that appears, uncheck User-defined parts, and close window with OK.


## Change view to Perspective!

Design parameters Vas

To specify design parameters for the corners columns behind, click on Design Parameters icon and select the four columns (2 on top, 2 on bottom). Confirm selection with $\mathbf{O K}$ and in the Design parameters window, and click on Pick up button. Point to column A1 by clicking on it, then the software picks up the set values. Close window with $\mathbf{O K}$. The following will be displayed:


Steel cross-section optimization
I'

Optimize the cross-section of the examined corner columns and correct design error mentioned above. Click on Steel cross-section optimization, the next window shows up:


Click on New icon to specify New optimization group and set the followings in the window:


For the group of lower columns, enter the Name 'lower columns' and select All members in one group. Close with $\mathbf{O K}$ and select 4 lower columns in the corners.

Finish selection with $\mathbf{O K}$, the following window shows up again:


Click on Library tab and select cross-section groups, and add to the list of Candidates for optimization. By clicking on the ' + ' sign before label I-shapes, the list of I shapes opens. From the list select HE European wide flange beams, and add to list on the left by clicking on the blue arrow between the two listboxes.
The following can be seen after setting:


Also create an optimization group for upper corner columns with name 'upper columns' and add $\boldsymbol{H E}$ European wide flange beams shape group to the list of Candidates. The following will be the result:


The Objective of optimization can be Minimum weight, Minimum height or Minimum width and Maximum utilization can also be set. It is possible to ignore certain checks during the optimization process. All strength checks are always performed but checks for Flexural buckling, Lateral torsional buckling and Web buckling can be deactivated if necessary. These settings must be set for all the optimization groups individually. In our example, select Minimum weight for optimization and set Maximum utilization to $\mathbf{0 . 8 5}$.

Remark: optimization calculation is based only on the results of previously run static analysis. If crosssections are replaced in the model as a result of the optimization process, the internal forces may change (can grow) because of the different stiffness parameters. Therefore, a new static calculation is recommended to check the design members again.

Optimization
Optimization
By clicking on Optimization button, the specified optimization groups and present utilizations of the cross-sections can be seen in the following window:


Optimization
Optimization

Replace cross-sections

[^0]Click on Optimization button, then the software starts calculation procedure. A warning message will appear, click on $\mathbf{O K}$ to continue.


In the bottom line, a progress bar shows the current state.


When the optimization process is complete, as a result the suggested cross-section is displayed under the row of the current cross-section:


Considering the specified parameters for optimization, the software suggests to apply shape HE 260 A for upper columns, and HE $\mathbf{4 0 0}$ AA for lower columns.
In our example, only the lower columns will be replaced, the cross-section of the upper columns will be kept. To replace cross-section, click on Replace field in the row of lower columns, then Replace cross-section icon in the lower right corner becomes active:


Activate Replacing cross-section icon, then software offers to save the model under a new name before replacing cross-sections:

## Replacing cross-sections

Save the model under a new name before replacing cross-sections?

№
Cancel

Click on No, keep the original file name.
In the following window click on Yes:


Changing the model by replacing cross-sections, the model must be saved and previous results of static analysis will be deleted.

Linear static analysis

On Static tab, run a new Linear static analysis.

Steel design Let us go back to Steel design tab and check utilization of the design members. Every member is safe after the strengthening, the optimization can be finished:


In the figure can be seen, that the maximum utilization of the critical member in the right corner is $\mathbf{0 , 9 2 8}(92,8 \%)$ after modification. This result is greater than the value that was set for optimization. This increase is due to the change in internal forces.
R. C. design

Design pad footing of column $\boldsymbol{A 1}$, change to $\boldsymbol{R}$. C. design tab:


Pad footing design
Click on Pad footing design icon and select the nodal support of column A1. Confirm selection with OK.

Footing design parameters

Then Footing design parameters window shows up:


In the parameters window select quadratic pad footing, set concrete Concrete strength to C30/37, soil cover - $\boldsymbol{t}$ [ mm ] to $\mathbf{1 7 0 0}$ and $\boldsymbol{b}_{\text {max }}[\mathrm{mm}]$ to $\mathbf{1 2 0 0}$ :


On reinforcement tab check Calculate reinforcement and Punching reinforcement function, and set reinforcement parameters as shown below:


On Soil tab, click on Soil database icon to select predefined soil characteristics, then the following window shows up:


Select type CST (Homogenous, coarse and medium sand, in dry or damp column and Solid row), then parameters of the selected soil are shown in bottom left corner:

CST	$\gamma\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	$\varphi\left[{ }^{\circ}\right]$	$\varphi_{\mathrm{T}}\left[{ }^{\circ}\right]$	$\varphi_{\mathrm{ZS}}\left[{ }^{\circ}\right]$	$\mathrm{E}_{0}\left[\mathrm{~N} / \mathrm{mm}^{2}\right]$	$\mu[]$
	2000	35.00	32.00	27.00	63.00	0.20
Solid, dry sand						

Confirm selection with $\mathbf{O K}$.

Layer thickness

Add new soil layer


Soil database


Enter $\mathbf{6 , 0} \mathbf{m}$ in Layer thickness field.

Add defined soil layer to the Soil profile with + icon.

Click on Soil database icon in Backfill options to define soil type for soil fill above pad's bottom level. Select BST (Mixed Non-silty, sandy gravel in dry or damp column and Solid row). Then confirm with $\mathbf{O K}$. The following window will be displayed:


After click on $\mathbf{O K}$ and enter the Name of the specified soil profile:

Save soil profile
Name
soill    Save a copy to the soil profile library     $\checkmark$   OK Cancel

Type in name 'soil1' and save profile with $\mathbf{O K}$. Program calculates the required dimensions and reinforcement of pad footing.

The next warning message shows up, close it with $\mathbf{O K}$.


The required dimensions and reinforcement are shown in plain view and in Info window. The view can be rotated as usual or a perspective view can be requested, if necessary (see Display menu). By clicking on Settings icon, the desired display parameters can be set.

Design calculations

By clicking on Design calculations button, the software presents a detailed design calculation report:


Click on $\mathbf{O K}$, to close window and function.

## 3. SLAB MODEL

Objective Calculate maximum bending moment, the required reinforcement of the slab shown below. Define actual reinforcement and calculate the maximum deflection by nonlinear analysis.


The thickness of the slab is 200 mm, concrete strength is C25/30, the rebar is B500A type. Use Eurocode 2 for design.


Define of geometry -

Start AxisVMX4 by double-clicking on AxisVMX4 icon in its installation folder, found in Start - Programs menu.

Create a new model by clicking on New icon. In the dialogue window replace Model file name with 'Slab', select Eurocode from Design codes and set Unit and formats to EU.


Starting workplane also can be set on the left in this window. Change workplane to $\boldsymbol{X} \boldsymbol{- Y}$ Top view. Our slab will be parallel to this plane, and the gravity load acts in $\boldsymbol{Z}$ direction. This setting can also be done using Choosing view icon on the editing interface.
Click $\mathbf{O K}$ to close the dialog window.
The geometry of the slab will be created by using of editing tools.

Elements
Select the Elements tab to bring up Elements toolbar.

Draw objects directly


Slab


Material library import

By clicking on Draw objects directly icon shows following window:


Change element type to Slab. Click on this icon even it is already selected because of the order of following steps.

The following window shows after clicking:


Click on $\mathbf{O K}$ to Browse cross-section libraries...:

$\underline{X} 4$ Material Library Import - Eurocode					$\square$	$\times$
Design code	Materials		C25/30	$\square$		
+ CSA S6-06 [Rev. 2010 ^	S280GD+Z275	$\wedge$	Type	Concrete		
© DIN (German)	S320GD+Z275		-	Isotropic		
\#-Eurocode	$\begin{aligned} & \text { S350GD+Z275 } \\ & \text { C12/15 } \end{aligned}$		$\mathrm{E}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	31500		
(1) Eurocode [A]	C16/20		$v$	0.20		
(7) Eurocode [ $\mathrm{B}^{\text {a }}$	C20/25		$\alpha_{T}\left[1 /{ }^{\circ} \mathrm{C}\right]$	1E-5		
(t. Eurocode [CZ]	C25/30		$\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	2500		
©-Eurocode [D]	C30/37 C35/45		$\mathrm{f}_{\mathrm{ck}}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	25.00		
© Eurocode [FIN] © + Eurocode [H]	C40/50		$\gamma_{c}$	1.500		
(T) Eurocode [ NL ]	C50/60		$\alpha_{c c}$	1.00		
(T) Eurocode [PL]	C14		$\phi_{t}$	2.00		
[ Eurocode [RO]	${ }^{\text {C16 }}$					
(T) Eurocode [SK]	C18					
(T) Eurocode [UK]	C22					
( ${ }^{\text {a }}$ MSZ (Hungarian)	C24				OK	
- NBCC 1995 v	C27					
< NBCC >	C30	$\checkmark$			Cancel	

Roll down in the list of Materials by using vertical sliding bar (or roll mouse wheel) and click on C25/30, then click on $\mathbf{O K}$.

Type
Change object Type to Plate.

Thickness

Set Thickness [mm] to 200.

Complex slab

Nodes in Relative coordinate system

Click on Complex slab icon. To define the geometry, user can draw the slab directly or define the coordinates. Firstly, use global coordinates (when $\boldsymbol{d}$ button is not pressed in Coordinates palette).

Define coordinates by the following.
For the first point press keys below:

$$
\begin{array}{ccccccc}
\mathrm{X} & 0 & \mathrm{y} & 0 & \mathrm{Z} & 0 & <\text { Enter }>.
\end{array}
$$

To enter additional points, select the relative coordinate system input. User can change coordinate system by pressing the $\boldsymbol{d}$ button on the Coordinates palette.

If $\boldsymbol{d}$ button is down (pressed) it denotes relative coordinates. $\boldsymbol{X}$ turns to $\boldsymbol{d} \boldsymbol{X}$ and so on indicating that we are defining relative coordinates. The relative point of origin is shown as thick blue $\boldsymbol{X}$ (cross turned $45^{\circ}$.)

The next figure shows state when $\boldsymbol{d}$ button is active:

$\left.\mathbf{X} \square$| $\mathrm{dX}[\mathrm{m}]: 8.400$ |
| :--- |
| $\mathrm{dY}[\mathrm{m}]:-3.400$ |
| $\mathrm{dZ}[\mathrm{m}]: 0$ |
| $\mathrm{dL}[\mathrm{m}]: 9.062$ |$\quad \mathrm{~d} \right\rvert\,$| $\mathrm{dr}[\mathrm{m}]: 9.062$ |
| :--- |
| $\mathrm{~d} \mathrm{a[ }]: 337.96$ |
| $\mathrm{dh}[\mathrm{m}]: 0$ |

Nodes in Relative coordinate system

Continue defining the next point with relative coordinates. Press following keys:

$$
\begin{array}{ccccccc}
\mathrm{X} & 7.9 & \mathrm{y} & 0 & \mathrm{Z} & 0 & <\text { Enter }>.
\end{array}
$$



Arc by three points


Line
1

Now, click on Arc by three points icon on the tool palette under Draw objects directly window:

Press following keys to define next contour points:

$$
\begin{array}{lllllll}
\mathrm{X} & 0.5 & \mathrm{y} & 3.4 & \mathrm{Z} & 0 & <\text { Enter }> \\
\mathrm{X} & 0 & \mathrm{y} & 6.8 & \mathrm{Z} & 0 & <\text { Enter }>
\end{array}
$$

Click on Line icon on the auxiliary palette:


Press following keys to define next points:

$$
\begin{array}{lllllll}
\mathrm{X} & -7.9 & \mathrm{y} & 0 & \mathrm{Z} & 0 & <\text { Enter }>,
\end{array}
$$

Then press Enter again to finish (close) contour definition.
Exit from Draw objects directly by pressing Esc.
The following will be displayed in the main window:


To move the origin of the local coordinate system to the bottom left corner of the slab, move cursor to
that position and press Insert key.

## Geometry <br> Click on Geometry tab

## Geometry $\mid$ Elements $\mid$ Loads $\mid$ Mesh $\mid$ Static $\mid$ Buckling $\mid$ Vibration $\mid$ Dynamic $\mid$ R. C. Design $\mid$ Steel design $\mid$ Timber design <br> 

Node
-
$\square$

Click on Node icon to create additional inner points and enter the following coordinates.

X	6.4	y	2.2	<Enter>
X	0	y	2.4	<Enter>

The given coordinates are relatives. After the first node has been created, the relative origin jumps to the specified point.

Press Esc to close function

The following will be displayed in the main window:


Please note, the thin red line represents the contour and type of the domain. Moving the cursor over the contour, hint shows up displaying properties of the element:

```
[Domain 1 [plate]] 200 mm
C25/30
55.996 m
27998.221 kg
x Ref.: Auto, z Ref.: Auto
```

Zoom to fit
Click on Zoom to fit for better view.

## Elements Change to Elements tab.



Nodal support Define nodal supports. Click on Nodal support icon, then select inner nodes and confirm with OK. The following window shows up:


Global node sup- Click on Calculation... button, then the following window shows up: port calculation


Here, stiffnesses of the support can be automatically calculated if the main parameters are specified for (lower/upper) columns.

New cross-section Click on New cross-section icon, the following window shows up:



Rectangular shape
Click on Rectangular shape icon and fill the required fields in the window:


Set $\boldsymbol{b}$ and $\boldsymbol{h}$ sizes to $\mathbf{3 0 0} \mathbf{~ m m}$, and click on Place button. Click anywhere in the window to place the new cross-section.

The following will be displayed:


Click on $\mathbf{O K}$ and enter the Name of the new cross-section to save.


Set $\boldsymbol{L}[\boldsymbol{m}]$ to $\mathbf{3}$-at, and click on $\mathbf{O K}$. In the Nodal support window, the stiffness components will be set automatically with the calculated values. After click on $\mathbf{O K}$ to close.

To define line supports, click on Line supports icon, then select the following lines on the contour: select the two parallel edges and the one on the left.


Confirm selection with $\mathbf{O K}$ and the following will be displayed:


Local line suppo Calculation

Click again on Calculation.. button to calculate the stiffnesses automatically considering support conditions. In the next window set $\boldsymbol{L}[\mathbf{m}]$ to $\mathbf{3}$ and $\boldsymbol{d}[m]$ to $\mathbf{3 0 0}$


To set End Releases to pinned, click on both icons:


Confirm settings with $\mathbf{O K}$ and the calculated values are displayed at the components in Line support window. Click on $\mathbf{O K}$ to close the window and the following will be displayed in the main window:


Loads $\quad$ Next step is to define loads on the slab, click on Loads tab:

```
Geometry Elements Loads Mesh 吕atic
```



Load cases and load groups
+14.

Self weight

## G

Various loads should be separated into load cases. Click on Load cases and load groups icon to add new load cases.


In the window that appears, click on the name ST1 in the top left corner and rename it to SELFWEIGHT. (ST1 is an automatically generated load case, which should be renamed in our example.)

Close window with $\mathbf{O K}$, then the previously edited load case (SELF-WEIGHT) is active. The actual load case is indicated on Info palette:


Click on Self weight icon then select all elements with $\boldsymbol{A l l}$ (*) button. By clicking on $_{\mathbf{O}}^{\boldsymbol{K}}$, a red dashed line parallel to the contour line indicates the self weight of the domain.


Click on Display options, then on Symbols tab uncheck Mesh and Surface centre under Graphics

New Load case +H

Open again Load cases and load groups window and create new Static load case with Name FINISH-

Distributed load on domain


Distributed
domain load

Domain line load


Arc by
three points


Load value

To define line load on the arched perimeter (load of balustrade), click on Domain line load icon. The following window shows up:


Set $\boldsymbol{p}_{\boldsymbol{z}} \mathbf{1}$ and $\boldsymbol{p}_{\boldsymbol{z}} \mathbf{2}$ load values at the endpoints to $\mathbf{- 1}$.
Select Arc by three points icon from bottom row, then click bottom, central and top points of the curved edge. Then again click on top point of edge, finally press Esc to exit.

Switch on load intensity using Numbering function at Speed buttons (in the bottom right corner). Click on Numbering icon and the following list opens:


Here, check Load value and Units checkboxes.
The following will be displayed showing the load intensity and units on the domain:


New Load case


Load combinations


New row


New row

Create a new load case with name LIVE LOAD.
Specify live load on the slab in this load case. Define Distributed load on domain as shown previously. Set load intensity to $-3,0 \mathrm{kN} / \mathrm{m}^{2}$.

Creating load cases have been finished, now load combinations should be set for design and checking. Activate Load combinations icon to open the following window:


Add two load combinations to the list and specify factors to combine load cases. Create first load combination by clicking on New row icon. Leave the name on default (Co.\#1). Select SLS Quasipermanent combination type, and apply the following factors for each load case:

SELF-WEIGHT	1.00	<Tab>
FINISIHES	1.00	<Tab>
LIVE LOAD	0.30	<Tab>

Enter these values into the appropriate cells.
Click on again New row icon to specify the second load combination. Keep the default name Co.\#2, select ULS combination type and specify the following factors:

SELF-WEIGHT	1.35	<Tab>
FINISHES	1.35	<Tab>
LIVE LOAD	1.50	<Tab>

Click on $\mathbf{O K}$ to confirm load combinations.
We have finished with basic data input but mesh must be generated before calculation.

Mesh Select Mesh tab to define domain mesh：										
Geometry	Elements	Loads	Mesh	Static	Buckling	Vibration	Dynamic	R．C．Design	Steel design	Timber design
	囲	長陣	冊冊1	东 1		X				

Domain meshing


Click on Domain meshing icon，then select All（＊）elements and confirm with $\mathbf{O K}$ ．In the following win－ dow select quadrangle as mesh type，set Average mesh element size［m］to 0．65．Check Fit mesh to load and activate Adjust mesh to column heads function．Using the last option，the mesh will be properly adjusted to column heads to prepare cutting of moment peaks（for more information，please see User＇s manual）．


Click on $\mathbf{O K}$ ，then the automatic mesh generation starts．
Progress bar shows the progress of meshing：


The following will be displayed in the main window after meshing：


Moving the cursor over the centre of a finite elements (red dot), a hint shows up displaying the properties of the element:


Display options 0

Switch on visibility of local coordinate system of the defined finite elements. Activate Display options and select Symbols tab:

Display options				
Symbols	Labels	Switches		
Graphics symbols			Local systems	
$\checkmark$ Node			$\square$ Beam	
$\checkmark$ Trusses			$\square \mathrm{Rib}$	
$\checkmark$ Beams			$\square$ Virtual beam	
$\checkmark$ Virtual beams			$\checkmark$ Surface	
$\checkmark$ Ribs			$\square$ Domain	
$\checkmark$ Center of circle			$\square$ Support	
$\checkmark$ Domain			$\square$ Spring	
$\checkmark$ Surface center			$\square$ Gap	
$\checkmark$ Mesh			$\square$ Link	
$\checkmark$ Nodal support			$\square$ Edge hinge	
$\checkmark$ Line support			$\square$ Load panel	
$\checkmark$ Surface support				
$\square$ Display footings			$\square$ Loads	
$\square$ Dimension lines			$\checkmark$ Concentrated	
$\square$ Detailed dimension lines			$\checkmark$ Line	
$\checkmark$ Springs			$\checkmark$ Surface	
$\checkmark$ Gap elements			$\checkmark$ Temperature	
$\checkmark$ Links			$\checkmark$ Fire	
$\checkmark$ Rigids			$\checkmark$ Self weight	
$\checkmark$ Diaphragm			$\checkmark$ Other	
$\checkmark$ Reference			$\checkmark$ Load panel	
$\checkmark$ Cross-section shape			$\checkmark$ Abutting wall	(for snow
$\checkmark$ End releases			loads) / Edge	n corner
$\checkmark$ Structural members			(for wind loads)	
$\square$ Reinforcement param.				
$\checkmark$ Reinforcement domain			$\square$ Load distributi	
$\checkmark$ Mass			Derived beam Moving load p	
$\checkmark$ Thickness reference points			$\checkmark$ Transparent loa	
			$\checkmark$ Object contour	
$\checkmark$ Auto refresh				
$\square$ Refresh all				
$\square$ Save as default			OK	Cancel

In Local systems group, check Surface checkbox and close window with OK.
Now, the local system is shown on every finite element: the red line denotes $\boldsymbol{x}$ direction, yellow for $\boldsymbol{y}$ direction and green for $\boldsymbol{z}$ direction.

Display options

## Static

Switch off Local system of Surface elements in Display options window, this will not be necessary now.


Linear static
analysis
${ }^{\mathrm{P}}$...
Nodal degrees of freedom

Click on Linear static analysis icon to run analysis.

Program checks the model, warns to set nodal degrees of freedom and offers one type in the following dialog box:


Check Save model with these settings checkbox and degree of freedom settings will be saved. Click on Yes to accept suggestion (Plane in $\boldsymbol{X}$ - $\boldsymbol{Y}$ plane), then program continues analysis.

The progress bar shows the calculation process:


Click on Statistics to see more information about the analysis.

The top progress bar shows progress of the actual task. The progress bar bellow is showing the total progress. Estimated Memory Requirement shows size of used virtual memory for analysis. If the PC's memory size is less than this, error message regarding size of virtual memory will be displayed.

The calculation closes with the next window, then click on $\mathbf{O K}$ to close window.


Returning to the main window, the program displays automatically vertical deformations ez [mm] considering SELF-WEIGHT load case in Isosurfaces 2D display mode.

Select load combination Co.\#1 (SLS) to check serviceability limit states (note: this is only the result of linear analysis):

14.6 SELF-WEIGHT	- eZ [r
$\square \square$ Linear analysis	
[1H SELF-WEIGHT	
. ${ }^{\text {H }}$ FINISHES	
III LIVE LOAD	
- ${ }^{(+)}$Co.\#1 (SLS Quasipermanent)	
-(+) Co.\#2 (ULS)	
田-( Envelopes	

Deformation values are negative because the positive direction of global $\boldsymbol{Z}$ axis is opposite to the direction of the specified loads.

Min, max values

To find location of maximum deformation, use Min, max values function. By clicking on icon, shows up following window:

Model extremes	
Displacements	
$\qquad$$\mathbf{e X}[\mathrm{mm}]$ $\mathbf{f X}$ [rad]   $\mathbf{e Y}[\mathrm{mm}]$ $\mathbf{f Y}$ [rad]   $\mathbf{e Z}[\mathrm{mm}]$ $\mathbf{f Z}$ [rad]   $\mathbf{e R}[\mathrm{mm}]$ $\mathbf{f R}[\mathrm{rad}]$   OK Cancel	

Select one of the deformation components. Confirm with $\mathbf{O K}$, then the program shows maximum negative value and its location as well:


Click on $\boldsymbol{O K}$ to continue, then the result panel jumps to the maximum positive value:


The Color legend shows boundary values of each color. Adjust number of boundary values by dragging the bottom edge of the palette:

	$\times$
$\begin{gathered} \mathrm{eZ} \\ {[\mathrm{~mm}]} \end{gathered}$	
$0.017$	
$\square-0.154$	
-0.325	
-0.496	
-0.666	
-0.837	
-1.008	
-1.178	
-1.349	
-1.520	
-1.690	
-1.861	
-2.032	
-2.203	
- -2.373	
$V$,	
15	



Find areas where the deflection is larger than $\mathbf{2 . 1} \mathbf{~ m m}$. Click on Color legend, then a setup window shows up. On the left side, click on the bottom value of the list and change default value (-2.423) to 2.1.


Press Enter, then Auto interpolate function sets the other boundary values.
Close window with $\mathbf{O K}$, in the main window the following will be displayed:


Area with larger than $\mathbf{2 . 1} \mathbf{~ m m}$ is indicated by the hatched area in blue.

Isolines
See results in Isolines display mode as well. Click on arrow right to Isosurfaces 2D title and select Isolines in the drop list.

Isolines	$\checkmark$
Diagram	
Section line	
Filled section line diagram	
Isolines	
Isosurfaces 2D	
None	

The resulting figure is the next:



Change Perspective settings as shown below:

Result display parameters


then click on $\boldsymbol{X}$ in the top right corner to close window.
To see the deformed shape, click on Result display parameters icon. Select Deformed Display shape in the window and confirm with $\mathbf{O K}$. Now, the deformed shape is displayed, if necessary change scale of the diagram (next to the Display mode drop down list).


Change view to $\boldsymbol{X}-\boldsymbol{Y}$ Top view!


After the deformations component $\mathbf{e z}$, check internal forces of the slab.
For this purpose, firstly select load combination Co.\#2 (ULS).
Click on arrow next to $\boldsymbol{e z}$ [ $\mathbf{m m}$ ] title, then the following drop list appears showing different result components:


Select Surface internal forces - $\boldsymbol{m} \boldsymbol{x}[\mathbf{k N m} / \boldsymbol{m}]$ then $\boldsymbol{m} \boldsymbol{x}$ moments will be displayed in Isolines mode. The $\boldsymbol{m} \boldsymbol{x}$ specific moment represents the moment that rotates around local $\boldsymbol{y}$ axis. With same method, select and see the following result components: my, mxy.

Now, select Rz [kN] component in Nodal support internal forces list to check vertical internal force in nodal supports.

Result display parameters


Activate Results display parameters icon:


In this window select Write values to Nodes function and close with $\mathbf{O K}$ to see the results:


Change result component to $\mathbf{R z}[\mathbf{k N} \mathbf{N} \mathbf{m}]$ in group Line support internal forces. Activate Result display parameters window and check Write values to Lines function to see the result values.

R. C. design
Click on $\boldsymbol{R}$. C. design tab to calculate required reinforcement and to apply actual reinforcement.


Reinforcement parameters


Click on Reinforcement parameters icon, then select All (*) and confirm with OK. The following Surface reinforcement parameters window shows up:


Firstly, specify Exposition classes on Materials tab. Set XC1 for top and bottom surface.
On Reinforcement tab, set Primary direction of reinforcement as $\boldsymbol{x}$ for top and bottom. Check Apply minimum cover checkbox:


Close window with $\mathbf{O K}$.
Change display mode to Isosurfaces 2D-re!
Now $\boldsymbol{a x b}\left[\mathbf{m m}^{2} / \mathbf{m}\right]$ results can be seen, which is the required amount of reinforcement in local $\boldsymbol{x}$ direction at bottom of the slab. See Reinforcement values in the list of results where you can also select required area of reinforcement for other directions as well.

By setting the boundary values of Color legend, the areas that can be reinforced with a certain rebar spacing (e.g. for Ø10/160 reinforcement set $491 \mathrm{~mm}^{2} / \mathrm{m}$ ) can be isolated.
Let us check the required top reinforcement in local $\boldsymbol{x}$ direction, click on axt [ $\mathbf{m m}^{\mathbf{2}} \mathbf{/ m}$ ] result component.

Min, max values

To find location of maximum required area of reinforcement, click on Min, max values icon. Select the appropriate result component in the next window:

| Model extremes |
| :--- | :--- |
| Reinforcement values |
| axt $\left[\mathrm{mm}^{2} / \mathrm{m}\right]$ ayt $\left[\mathrm{mm}^{2} / \mathrm{m}\right]$ <br> axb $\left[\mathrm{mm}^{2} / \mathrm{m}\right]$ ayb $\left[\mathrm{mm}^{2} / \mathrm{m}\right]$ <br> axb,axt $\left[\mathrm{mm}^{2} / \mathrm{m}\right]$ ayb,ayt $\left[\mathrm{mm}^{2} / \mathrm{m}\right]$ <br> axb,ayb $\left[\mathrm{mm}^{2} / \mathrm{m}\right]$ axt,ayt $\left[\mathrm{mm}^{2} / \mathrm{m}\right]$ <br> OK Cancel |

By clicking on $\mathbf{O K}$, the program shows maximum area of required reinforcement and its location.


Click on $\mathbf{O K}$ to exit.
Apply actual reinforcement according to the requirements.
As a base reinforcement, use $\boldsymbol{\varnothing 1 0 / 1 6 0 ~} \mathbf{~ m m}\left(491 \mathbf{~ m m}^{2} / \mathbf{m}\right)$ reinforcement on top and bottom layers in both direction. In the area of maximum moments use $\boldsymbol{\varnothing 1 0 / 1 6 0 ~} \mathbf{~ m m}$ extra reinforcement additionally (in these areas the total area of reinforcement will be $\mathbf{9 8 2} \mathbf{~ m m}^{2} / \mathbf{m}$ ).
The previous figure shows that the maximum required reinforcement ( $\mathbf{7 5 0} \mathbf{m m}^{2} / \mathbf{m}$ ) is less than the area of double-reinforcement ( $\mathbf{9 8 2} \mathbf{~ m m}^{2} / \mathbf{m}$ ), so the slab can be reinforced by these concepts.
To isolate areas with different reinforcement requirement, set number of levels in Color legend to 3.
Enter the above two values ( $\mathbf{4 9 1}$ and $\mathbf{9 8 2} \mathrm{mm}^{2} / \mathrm{m}$ ) as boundary values.


Close settings with $\mathbf{O K}$, then the program separates areas by colors where the specified reinforcement spacing is still sufficient.


It can be seen that there is no need for upper reinforcement in the middle, hatched area of the slab. In the blue areas $\varnothing \mathbf{1 0} / \mathbf{1 6 0} \mathbf{~ m m}$ base reinforcement is needed, and in the vicinity of the columns extra reinforcement must be applied ( $\boldsymbol{\varnothing 1 0 / 1 6 0 ~ m m + ~ Ø 1 0 / 1 6 0 ~ m m ) . ~}$

Let us examine again design moments in the vicinity of the columns. Go back to Static tab and select $\boldsymbol{m} \boldsymbol{D}+$ design component in Reinforcement design forces list. The result component $\boldsymbol{m} \boldsymbol{x} \boldsymbol{D}+$ considers also $\boldsymbol{m} \boldsymbol{x y}$ internal forces.

Section lines Select Section lines function from vertical toolbar on the left.
In the popup window click on New section plane button and in the dialog window specify the name of the section, type in column 1.


By clicking on $\mathbf{O K}$, the location of the section plane should be defined. First click on top nodal support then on bottom nodal support.

The following window will be displayed:



Speed buttons

Change view to $\boldsymbol{Y}$ - $\boldsymbol{Z}$ plane

and change results from Isosurfaces 2D to Section line, then the internal forces are displayed in section defined previously. It can be seen on the diagram, that software cut moment peaks over columns because this function was activated previously when meshing was created (see User's manual for more information about the rules and operation).


Now, turn off sections. Click on Section planes speed button (bottom right corner).
Click on Numbering icon (among Speed buttons) and uncheck Write values to Lines and Units as well.


Change view to Perspective and Section line display mode to Isosurfaces 3D.
The following will be displayed which shows design moments in local $\boldsymbol{x}$ direction:

R. C. design

To specify actual reinforcement, change tab to $\boldsymbol{R}$. C. design.
Geometry
Elements Loads $\mid$ Mesh $\mid$ Static $\mid$ Buckling $\mid$ Vibration $\mid$ Dynamic $\quad$ R. C. Design $\mid$ Steel design $\mid$ Timber design $\mid$

Actual
reinforcement

Click on Actual reinforcement icon, the following window shows up:

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Actual reinforcement $\times$} <br>
\hline \multicolumn{2}{|l|}{Parameters (Eurocode) Reinforcement} <br>
\hline \& <br>

\hline \& \begin{tabular}{l}
Primary direction of reinfo <br>
Top surface

$y$
$x$ y <br>
Bottom surface
\end{tabular} <br>

\hline \multicolumn{2}{|l|}{$\square$ Use this rebar steel and concrete cover by default} <br>
\hline \multicolumn{2}{|l|}{$\checkmark$ Auto refresh} <br>
\hline Pick up >> \&  <br>
\hline
\end{tabular}

Firstly, the base reinforcement ( $\boldsymbol{\varnothing 1 0 / 1 6 0 ~} \mathbf{m m}$ ) will be specified in each direction, the extra reinforcement will be added to actual reinforcement later.

On Parameters tab, set $\boldsymbol{x}$ direction as Primary direction of reinforcement on top and bottom surface and check Apply minimum cover checkbox.
On Reinforcement tab, set Rebar diameter $\varnothing$ [mm] = 10, and Spacing [mm] to 160. Check Calculation rebar position function. After select Bottom reinforcement in $\boldsymbol{x}$ Direction and click on Add button. The next will be displayed in the window:


Define the other reinforcement layers in $\boldsymbol{x}$ and $\boldsymbol{y}$ Direction in the same way.
Performing the task, you will need to see the next:


Reinforcement over an existing domain

Now, the set reinforcement should be assigned to the domain. Click on Reinforcement over an existing domain icon, and click inside the domain. Finish selection with Close button.


Change display mode to Isosurfaces 2D. The specified reinforcements are displayed on the slab:


The thick brown lines and the titles indicates the given actual reinforcement. If only one direction of reinforcement is visible on the screen, then open Display options. On Label tab switch off According to the displayed result component function.


Reinforcement difference

Actual reinforcement

Rectangular reinforcement domain

Select $\boldsymbol{x} \boldsymbol{b}-\boldsymbol{a x b}$ result component in Reinforcement difference list.
Click on Numbering icon (among Speed buttons) and uncheck Write values to Surfaces to see the also the values not only the colors:


The specified actual reinforcement in local $\boldsymbol{x}$ direction is safe in Co.\#2 (ULS) load combination because any negative value cannot be seen in the figure.

We will come to the same conclusion if $\boldsymbol{y} \boldsymbol{b}$-ayb result component is checked.
Now change to xt-axt component:


Around the nodal supports negative values can be seen indicating the areas where additional reinforcement must be applied.

Increase reinforcement around the columns in $\mathbf{2 x 2} \boldsymbol{m}$ square area. Click on Actual reinforcement icon and select Reinforcement tab. Set $\boldsymbol{\varnothing 1 0 / 1 6 0}$ reinforcement, select Top reinforcement in $\boldsymbol{x}$ Direction and click on Add button.

Additional reinforcement can be defined using Rectangular reinforcement domain function. Click on the icon, then move cursor to the node of the bottom nodal support. Here, press Insert key to place the origin of the local coordinate system, the first corner point of the square will be defined relative to this point.
Using relative coordinates, enter the following coordinates:

X	-1	y	-1	Z	0	<Enter>
X	2	y	2	Z	0	<Enter>

finally press Esc twice to exit.
The following will be the result:


The results of $\boldsymbol{x t}$-axt component around the bottom lower nodal support are positive, so the actual reinforcement is sufficient with the additional reinforcement.

Translate / Copy $\overrightarrow{\Delta \Delta}$

Copy this actual reinforcement domain to the upper nodal support. Click on Translate icon:


Then move the cursor over the contour of reinforcement domain and click on it to select. Confirm with $\mathbf{O K}$ to finish selection. In the Translate window select Incremental Method and set $\boldsymbol{N}=\mathbf{1}$ :

Translate / Copy	
$\begin{aligned} & N=1 \\ & d[m]=0.001 \end{aligned}$	分
Method Incremental Distribute Spread by distance	Nodes to connect None Double selected All
Consecutive Move Detach	Copy elements Copy loads Copy nodal masses Copy dimension symbols
With guidelines With DXF/PDF layer Visible layers only	OK Cancel

Close window with $\mathbf{O K}$ and define translation vector by clicking on lower and after on upper nodal support. Performing these steps, we have copied the actual domain reinforcement, the following will be displayed:


Actual reinforcement

There is not any negative $\boldsymbol{x t}$-axt value, so the actual reinforcement is sufficient at top in $\boldsymbol{x}$ direction. Now select $\boldsymbol{y t}$-ayt result component. The negative values show that we also need additional reinforcement at top in $\mathbf{y}$ direction.

Press and hold Shift key, select actual reinforcement above columns, then click on Actual reinforcement icon. In Actual reinforcement window change to Reinforcement tab:


Click on the field of given reinforcement at Top reinforcement in $\boldsymbol{x}$ Direction, after click on Top reinforcement in $\boldsymbol{y}$ Direction. Finally, add the specified reinforcement to the last selected layer:


Click on $\mathbf{O K}$ to create additional reinforcement in $\boldsymbol{y}$ direction.


Now, the results of $\boldsymbol{y t}$ - ayt component are positive, so the actual (defined) reinforcement is sufficient for all reinforcement layers.
Check crack width in Co.\#1 (SLS) load combination.

Select load combination Co.\#1 (SLS), then select Cracking - wk(b) result component which is showing crack widths in local $\boldsymbol{x}$ direction at bottom surface of the domain (slab).


The following will be displayed:


Domain is hatched in blue which means that there are no cracks at bottom surface of domain applying the selected load combination.

Select Cracking - wk(t) result component which is showing crack widths in local $\boldsymbol{x}$ direction at top surface of the domain. The maximum crack widths above nodal supports is $\mathbf{0 . 1 2 ~ \mathbf { m m }}$.


To determine the deflection of the cracked slab you need to run Nonlinear static analysis considering load combination Co.\#1 (SLS).

## Static

Nonlinear static analysis
$\xrightarrow{\text { P! }}$

Click on Static tab to run analysis.
Click on Nonlinear static analysis icon and the following window shows up:


At Load cases select Co.\#1 (SLS) load combination and check Actual reinforcement to use in calculation, and let us consider the effect of Creep and Shrinkage. By clicking on $\mathbf{O K}$, then the analysis starts:

Statistics
Click on Messages to see more information about the analysis durng calculation:


Iterations
Click on Iterations to see how the calculations are converging for each increment:


After click on $\mathbf{O K}$, then program automatically activates vertical deformations ez [mm] in Isosurfaces 2D display mode in load combination Co.\#1 with nonlinear analysis. Switch of Write values to Nodes at Numbering speed button, then the following will be displayed:


Plate punching analysis


To check shear punching click on R.C. Design tab and select load combination Co.\#2 (ULS). Click on Plate punching analysis icon then select upper nodal support and click on $\mathbf{O K}$. The following window shows up:


The material types (for concrete or rebar) are set automatically applying the parameters set before. Programs applies the current design code and national specifications. Set the parameters shown above and click on $\mathbf{O K}$ to close the window. We get the following results:


According to the check, No punching reinforcement is needed.

## Design calculations

To see detailed calculations about the punching analysis, click on Design calculations button:


Click on $\mathbf{O K}$ to exit from Design calculations and click on Close to exit from Plate punching analysis window.

## 4．MEMBRANE MODEL

## 4．1．Geometry definition using parametric mesh

Objective The objective of the analysis is to determine the internal forces and reinforcements of the following wall structure．The loads and support conditions will be determined later．


The wall thickness is 200 mm ，assume material C25／30 for concrete and B500A for the reinforcement． Analyse the structure according to the Eurocode 2 standard．

Start AxisVMX4 by double－clicking on AxisVMX4 icon in its installation folder，found in Start－Pro－ grams menu．

Create a new model by clicking on New icon．In the dialogue window replace Model file name with ＇membran＿1＇，select Eurocode from Design codes and set Unit and formats to EU．

（Starting workplane（ $\boldsymbol{X}-\boldsymbol{Z}$ plane／front view）can also be set in this window if selected from the list in the left side．）
Click $\boldsymbol{O K}$ to close the dialog window．
In the following the geometry of the wall structure is created by editing toolbar．
View Check view（workplane）of the model when starting a new model．On the left side of the main window find Views icon，open it with moving the cursor over the icon and select $\boldsymbol{X}$－ $\boldsymbol{Z}$ view．The actual view is presented by the global coordinate system sign at the left bottom corner of the main window．


Define of geometry－

Select Geometry tab to define the geometry and structural properties of the beam．On the tab the icons of the available functions are displayed．
Geometry $\mid$ Elements $\mid$ Loads $\mid$ Mesh $\mid$ Static $\mid$ Buckling $\mid$ Vibration $\mid$ Dynamic $\mid$ R．C．Design $\mid$ Steel design $\mid$ Timber design $\mid$
－｜ノ ーロ $\triangle \rightarrow$ 〇｜

Quad division
Create the geometry by Quad division function. On Geometry tab click on its icon, the following shows up:


To define the top part of the wall type in $\mathbf{2 0}$ for the value of $\boldsymbol{N}_{1} \mathrm{~A}$ and $\mathbf{8}$ for $\boldsymbol{N}_{\mathbf{2}}$

Quad division	$\times$
$\begin{aligned} & N_{1}=20 \\ & N_{2}=8 \\ & \hline \end{aligned}$	
$\checkmark$ Creating surfaces	
OK	Cancel

Close panel with $\mathbf{O K}$ and specify the corner points of the top 'body' of the wall. The nodes can be placed by editing tools or could be determined by their coordinates.

Geometry definition using coordinates:
To determine the starting point of the line ( $\boldsymbol{X}=\mathbf{0}, \boldsymbol{Y}=\mathbf{0}, \boldsymbol{Z}=\mathbf{3 . 0 0}$ ), press $\boldsymbol{x}$ button, then the cursor jumps to the field of $\boldsymbol{x}$ coordinate on the Coordinates panel, then enter $\boldsymbol{0}$. After press $\boldsymbol{y}$ button and enter $\boldsymbol{0}$. Similarly, specify $\boldsymbol{z}$ value (3.00), finally close the input with enter key.
The other coordinates are specified as follows:

X	12	y	0	Z	0	<Enter>
X	0	y	0	Z	3	<Enter>
X	-12	y	0	Z	0	<Enter>

Press mouse right button and from the quick menu select Cancel to finish the drawing process, then the following result can be seen:


To define the 'legs' of the wall structure activate again the function of Quad division. To define the top part of the wall type in $\mathbf{2 0}$ for the value of $\boldsymbol{N}_{\mathbf{1}}$ and $\boldsymbol{8}$ for $\boldsymbol{N}_{\mathbf{2}}$ :

In the window set value of $\mathbf{3}$ for $\boldsymbol{N}_{\mathbf{1}}$ and $\mathbf{6}$ for $\boldsymbol{N}_{\mathbf{2}}$

Quad division
$\mathrm{N}_{1}=3$
$\mathrm{~N}_{2}=6$
O Creating surfaces
OK Cancel

Close the panel with $\mathbf{O K}$ and specify the four corner nodes of the leg on the left side.
The coordinates are specified as follows:

X	0	y	0	Z	-6	<Enter>
X	1	y	0	Z	0	<Enter>
X	0.8	y	0	Z	3	<Enter>
X	-1.8	y	0	Z	0	<Enter>

Press Esc to finish data input.
The following geometry can be seen as a result:


Mirror the previously drawn 'leg' to the symmetry axis of the wall ( $\boldsymbol{X}=\mathbf{6} \boldsymbol{m}$ ).
The mirror function can be found on the vertical toolbar on the left side.


By clicking on the icon, the selecting panel activates:


Select the entire 'leg' with selection window.


The selected elements will be highlighted:


Finish the selection with $\mathbf{O K}$ and the following dialogue panel will be displayed:

Mirror	
Mirror	
Copy	
Multiple	Nodes to connect
Move   Detach	None
$\square$ Mirror local x-axis of line	
elements	$\square$ Copy elements
$\square$	$\square$ Copy nodal masses
$\square$ With guidelines	
$\square$ With DXF/PDF layer	
$\square$ Visible layers only	

Select Multiple Mirror type and set None for Nodes to connect.

After clicking on $\mathbf{O K}$, the mirror plane should be specified. First select any point on the symmetric plane of the wall, then select any point in the vertical direction above or below that point.


As a result of mirroring the following can be seen:


The geometry of the wall has been successfully created.

Zoom


Zoom to fit


Geometry check


Let's zoom to the structure. Move the cursor over the Zoom icon and the zoom icon bar pops up:


Click on Zoom to fit icon for better view.

Click on Geometry check icon on the Geometry tab to filter the errors in geometry. In the Geometry check panel, the maximum tolerance (distance) can be specified to merge nodes.


Switch off the option of Select unattached nodes or lines, then close the window with OK.

After the geometry check a summary of actions shows:


Elements To define Surface elements, change tab to Elements:


Surface elements


Material library import

Click on Surface elements icon and on selecting toolbar, click on All (*), finally close the panel with $\mathbf{O K}$. After the Surface elements window shows up:


Set Type of the element to Membrane (plane stress).
Next to the label of Material, click on Material library import icon, then the following window shows up:

Material Library Import - Eurocode					$\square$	$\times$
Design code	Material		C25/30	$\square$		
円- CSA S6-06 [Rev. 2010 ^	C12/15	$\wedge$	Type	Concrete		
+ DIN (German)	C16/20 C20/25		-	Isotropic		
¢ Eurocode	C25/30		$\mathrm{E}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	31500		
†- Eurocode [A]	C30/37		$v$	0.20		
†- Eurocode [B]	C35/45		$\alpha_{T}\left[1 /{ }^{\circ} \mathrm{C}\right]$	1E-5		
†- Eurocode [CZ]	C40/50 C45/55		$\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	2500		
¢ Eurocode [D]	C50/60		$\mathrm{f}_{\mathrm{ck}}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	25.00		
+ Eurocode [FIN]	C14		$\mathrm{Y}_{\mathrm{ck}}$	1.500		
$\pm$ Eurocode [H]	C16		$\alpha_{c c}$	1.00		
†- Eurocode [ NL ]	C18		$\alpha_{c c}$	1.00		
¢ Eurocode [PL]	C20		$\phi_{t}$	2.00		
¢- Eurocode [RO]	C22					
+ Eurocode [SK]	C24 C27					
Đ- Eurocode [UK]	C30					
¢-MSZ (Hungarian)	C35				OK	
+ NBCC 1995	C40					
< >	C45	$\checkmark$			Cancel	

Select C25/30 from the material list, then confirm with OK.

Thickness


Type in the Thickness edit box $\mathbf{2 0 0}$ [mm], then close the dialog with $\mathbf{O K}$.

Display options亿号

To view the local coordinate system of the Surface elements, click on Display Options icon in the icons menu bar on the left side. The following dialogue window is displayed:

Display options				
Symbols	Labels	Switches		
Graphics symbols			Local systems	
$\checkmark$ Node			$\square$ Beam	
$\checkmark$ Trusses			$\square \mathrm{Rib}$	
$\checkmark$ Beams			$\square$ Virtual beam	
$\checkmark$ Virtual beams			$\square$ Surface	
$\checkmark$ Ribs			$\square$ Domain	
$\checkmark$ Center of circle			$\square$ Support	
$\checkmark$ Domain			Spring	
$\checkmark$ Surface center		$\checkmark$ Surface center	Gap	
$\checkmark$ Mesh			Link	
$\checkmark$ Nodal support			$\square$ Edge hinge	
$\checkmark$ Line support			$\square$ Load panel	
$\checkmark$ Surface support				
$\square$ Display footings			$\square$ Loads	
$\square$ Dimension lines			$\checkmark$ Concentrate	
$\square$ Detailed dimension lines			$\checkmark$ Line	
$\checkmark$ Springs			$\checkmark$ Surface	
$\checkmark$ Gap elements			$\checkmark$ Temperature	
$\checkmark$ Links			$\checkmark$ Fire	
$\checkmark$ Rigids			$\checkmark$ Self weight	
$\checkmark$ Diaphragm			$\checkmark$ Other	
$\checkmark$ Reference			$\checkmark$ Load panel	
$\checkmark$ Cross-section shape			$\checkmark$ Abutting wall	(for snow
$\checkmark$ End releases			loads) / Edg	n corner
$\checkmark$ Structural members			(for wind loa	
$\square$ Reinforcement param.				
$\checkmark$ Reinforcement domain			$\square$ Load distribution	
$\checkmark$ Mass			$\square$ Derived beam	
			$\square$ Moving load	
$\checkmark$ Thickness reference points			$\checkmark$ Transparent load diagrams	
			$\square$ Object contou	
$\checkmark$ Auto refresh				
$\square$ Refresh all				
$\square$ Save as default			OK	Cancel

Check Surface checkbox in the Local Systems panel group. Accept the change with OK.

If the Mesh, Node, Surface centre is switched on among the Graphics Symbols in the Display Options, you can see that the program uses 9 -node membrane elements. These 9 nodes are the 4 corners, 4 midpoints and the centre point of surface element. If you move the cursor over the surface centre symbol (a filled square), a hint window is displayed with the properties of the surface element: its tag, material, thickness, mass and references ( $\boldsymbol{x}, \boldsymbol{z}$ ), as shown on the next picture:


The red line shows the $\boldsymbol{x}$ axis of the local coordinate system, the yellow one the $\boldsymbol{y}$ axis and the green one the $\boldsymbol{z}$ axis.

Line support

To create supports, click on Line support icon and select the bottom lines of the 'legs' with a selection box. We suppose pinned line support along these edges.


Press $\mathbf{O K}$ to go on, the following window shows up:


To define a pinned support, use the following settings:


With this final step, the finite element definition of the wall structure has been completed.

### 4.2. Geometry definition using domains

Objective

The objective of the analysis is to determine the internal forces and reinforcements of the following wall structure. The loads and support conditions will be determined later.


The wall thickness is 200 mm , assume material C25/30 for concrete and B500A for the reinforcement. Analyse the structure according to the Eurocode 2 standard.

Start AxisVMX4 by double-clicking on AxisVMX4 icon in its installation folder, found in Start - Programs menu.

Create a new model by clicking on New icon. In the dialogue window replace Model file name with 'membran_2', select Eurocode from Design codes and set Unit and formats to EU.

(Starting workplane ( $\boldsymbol{X}-\boldsymbol{Z}$ plane/front view) can also be set in this window if selected from the list in the left side.)
Click $\boldsymbol{O K}$ to close the dialog window.
In the following the geometry of the wall structure is created by editing toolbar.
Check the view (workplane) of the model when starting a new model. On the left side of the main window find Views icon, open it with moving the cursor over the icon and select $\boldsymbol{X}-\boldsymbol{Z}$ view. The actual view is presented by the global coordinate system sign at the left bottom corner of the main window.


Select Geometry tab to define the geometry and structural properties of the beam. On this tab the icons of the available functions are actives.


Draw objects directly


Domain Click on Domain icon (the second one on the right among the top row icons). Choose it even if this is $\because$

Material library import

By clicking on Draw objects directly icon brings up the following window:
 the active icon because of the sequences of steps. The following dialogue panel shows after clicking:


The following, Cross-section editor window shows after clicking.

Material Library Import - Eurocode					$\square$	$\times$
Design code	Materials		C25/30	$\square$		
(T) CSA S6-06 [Rev. 2010 ^	C12/15	$\wedge$	Type	Concrete		
© DIN (German)	C16/20			Isotropic		
( + - Eurocode	C20/25		$\mathrm{E}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	31500		
(1) Eurocode [A]	C30/37		$\checkmark$	0.20		
( $\ddagger$ Eurocode [B]	C35/45		$\alpha_{T}\left[1 /{ }^{\circ} \mathrm{C}\right]$	1E-5		
(\#) Eurocode [CZ]	C40/50 C45/55		$\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	2500		
(T- Eurocode [D]	C50/60		$\mathrm{f}_{\mathrm{ck}}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	25.00		
©. Eurocode [FIN]	C14		$Y_{c}$	1.500		
(T) Eurocode [ NL ]	C18		$\alpha_{c c}$	1.00		
© Eurocode [PL]	C20		$\phi_{t}$	2.00		
(T) Eurocode [RO]	C22					
(1) Eurocode [SK]	C24 C27					
(1) Eurocode [UK]	C30					
(-MSZ (Hungarian)	C35				OK	
+1. NBCC 1995	C40					
< >	C45	$\checkmark$			Cancel	

Select C25/30 from the Materials list, then confirm with OK.

Type On the following panel, set Type to Membrane (plane stress):


Click on Complex slab icon. User can draw the domain directly or define its coordinates.

Geometry definition using coordinates:
To determine the starting point of the polygon ( $\boldsymbol{X}=\mathbf{0}, \boldsymbol{Y}=\mathbf{0}, \boldsymbol{Z}=\mathbf{0}$ ), press $\boldsymbol{x}$ button, then the cursor jumps to the field of $\boldsymbol{x}$ coordinate on the Coordinates panel, then enter $\boldsymbol{0}$. After press $\boldsymbol{y}$ button and enter $\mathbf{0}$. Similarly, specify $\boldsymbol{z}$ value, finally close the input with Enter key.
In the following, use relative coordinates to define the nodes of the domain. Press button $\boldsymbol{d}$ on the Coordinates panel. If it is pressed on the Coordinates panel the values can be specified relative to local origin ( $\boldsymbol{d} \boldsymbol{X}, \boldsymbol{d} \boldsymbol{Y}$, etc....).

$\times$	d	$\begin{array}{ll} \mathrm{dX}[\mathrm{~m}]: & 7.500 \\ \mathrm{dY}[\mathrm{~m}]: & 0 \\ \mathrm{dZ}[\mathrm{~m}]: & 10.600 \\ \mathrm{dL}[\mathrm{~m}]: & 12.985 \end{array}$	d	```d r[m] : 12.985 d a[``] : 54.72 dh[m]: 0```

Continue defining next points of the domain with relative coordinates:

X	1	y	0	Z	0	<Enter>
X	0.8	y	0	Z	3	<Enter>
X	8.4	y	0	Z	0	<Enter>
X	0.8	y	0	Z	-3	<Enter>
X	1	y	0	Z	0	<Enter>
X	0	y	0	Z	6	<Enter>
X	-12	y	0	Z	0	<Enter>
X	0	y	0	Z	-6	<Enter>

Press Esc twice to exit from the command of object drawing (Draw objects directly).

The following will be displayed in the main window：


Translate／Copy
$\Delta \vec{\Delta}$

Click on Translate icon！


Select the top horizontal line and finish the selection with OK．Choose Incremental from the Method panel， $\boldsymbol{N}=\mathbf{1}$, Nodes to Connect：None，then close dialog window with $\mathbf{O K}$ ．Now specify the translation vector．Click on any empty place in the graphics area，then type in the following sequence：
X 0 y 0 z -0.8 ，after press Enter．
The following will be displayed in the main window：


The blue line on the inner contour of the domain indicates the type of the domain（in our case it is membrane）．Moving the cursor over it shows a hint window with the properties of the domain：


Mesh
Click on Mesh tab for domain meshing．

Geometry	Elements	Loads	Mesh	Static	Buckling	Vibration	Dynamic	R．C．Design	Steel design	Timber design
1（咱				局分		$\times$				

Click on Domain Meshing icon. Select the domain with the All (*) button and finish selection with $\mathbf{O K}$. The following dialogue window will be displayed:


Type in $\mathbf{0 . 7}$ [m] for the Average mesh element size. After closing the dialog with $\mathbf{O K}$, the automatic mesh generation starts. The progress of Mesh generation is shown in the window:


When mesh generation is completed, the following will be displayed:


If you move the cursor on the symbol of the surface centre (a filled square), a hint window is displayed with the properties of the selected surface element: its tag, material, thickness, mass and references as shown in the next figure:


## Elements

Return to Elements tab:

$$
\begin{aligned}
& \text { Geometry Elements } \begin{array}{l}
\text { Loads }
\end{array} \text { Mesh } \mid \text { Static } \mid \text { Buckling } \mid \text { Vibration } \mid \text { Dynamic } \mid \text { R. C. Design } \mid \text { Steel design } \mid \text { Timber design }
\end{aligned}
$$

Line support
『श?

To create supports, click on Line support icon and select the bottom lines of the 'legs' with a selection box. We suppose pinned line support along these edges.


Press $\mathbf{O K}$ to go on, the following window shows up:


To define a pinned support, use the following settings:


Close window with $\mathbf{O K}$, the following result can be seen:


With this final step, the finite element definition of the wall structure has been completed. In the following, we proceed the analysis with this model (Geometry definition using domains).

Loads The next step is to specify the loads on the wall structure. Click on Loads tab:
Geometry $\mid$ Elements Loads $\mid$ Mesh $\mid$ Static $\mid$ Buckling $\mid$ Vibration $\mid$ Dynamic $\mid$ R. C. Design $\mid$ Steel design $\mid$ Timber design

## Surface edge loads



Assume a $\mathbf{5 0} \mathbf{~ k N} / \boldsymbol{m}$ vertical distributed load. Click on Surface Edge Load icon, then select the second line from top (created with the translate command before):


Finish the selection with $\mathbf{O K}$ and type in $\boldsymbol{p}_{\boldsymbol{y}}[\mathbf{k} \boldsymbol{N} / \mathbf{m}]$ to $\mathbf{5 0}$ :


Press $\mathbf{O K}$ and the load is applied.
The following result is displayed:


Static
The next step is the analysis and post processing. Click on Static tab:

Geometry Elements	Loads	Mesh	Static	Buckling\|	Vibration	Dynamic	R. C. Design	\| Steel design	Timber design		
${ }^{\text {², }}$					$\checkmark$		$\checkmark$		$\checkmark$	$\stackrel{\text { v }}{ }=\max _{\text {min }}$	$\square_{*}^{4} L_{4}^{F}$

Linear static


Nodal degrees of freedom

## analysis

Click on Linear static analysis icon to start analysis. and offers a setting:

To proceed with the analysis, you must set degrees of freedom (DOF). The program checks the model


Check the Save model with these settings checkbox and degree of freedom settings will be saved. Accept Membrane in X-Z plane setting and close with Yes button.

Analysis continuous and the following progress bar shows up:


Messages, statistics

Click on Messages and Statistics to see more information about the analysis. The following window will be displayed after analysis:


After click on $\mathbf{O K}$, the program automatically activates vertical deformations $\boldsymbol{e z}$ [ $\mathbf{m m}$ ] on Static tab in Isosurfaces 2D view.

Display options


Zoom to fit

Switch off Loads in Display options on Symbols tab for cleaner view.

Click on Zoom to fit function for better view.


The following will be displayed:


Select Surface internal forces - nx by clicking on arrow next to the text ez [mm] on Static tab:

$\mathrm{e} Z$ [mm]	Isosurfa
Displacement   eX [mm]   $\mathrm{eV}[\mathrm{mm}]$   $\mathrm{e} Z[\mathrm{~mm}]$   fX [rad]   fY [rad]   fZ [rad]   eR [mm]   fR [rad]   Surface internal forces $\begin{aligned} & \cdots \mathrm{nx}[\mathrm{kN} / \mathrm{m}] \\ & \mathrm{ny}[\mathrm{kN} / \mathrm{m}] \\ & \mathrm{nxy}[\mathrm{kN} / \mathrm{m}] \\ & . . . \mathrm{vEd}[\mathrm{kN} / \mathrm{m}] \\ & \mathrm{n} 1[\mathrm{kN} / \mathrm{m}] \\ & \mathrm{n} 2[\mathrm{kN} / \mathrm{m}] \\ & . \mathrm{an}\left[{ }^{\circ}\right] \\ & \ldots \mathrm{nxD}[\mathrm{kN} / \mathrm{m}] \\ & \mathrm{nyD}[\mathrm{kN} / \mathrm{m}] \end{aligned}$   Intensity variation   Surface stresses   Line support internal forces	

The $\boldsymbol{n x}$ diagram shows the membrane force in local $\boldsymbol{x}$ direction.

Min, max values

To find location of minimum and maximum values use Min, Max values function. By clicking on its icon shows following window:

Model extremes		$\times$
Surface forces		
nx [ $\mathrm{kN} / \mathrm{m}$ ]	$\mathrm{n} 1[\mathrm{kN} / \mathrm{m}]$	$\mathrm{nxD}[\mathrm{kN} / \mathrm{m}]$
ny $[\mathrm{kN} / \mathrm{m}]$ nxy $[\mathrm{kN} / \mathrm{m}]$	$\begin{aligned} & \mathrm{n} 2[\mathrm{kN} / \mathrm{m}] \\ & \text { an [ } \left.{ }^{\circ}\right] \end{aligned}$	nyD $[\mathrm{kN} / \mathrm{m}]$   Total
$m x[\mathrm{kNm} / \mathrm{m}]$	$\mathrm{m} 1[\mathrm{kNm} / \mathrm{m}]$	$m x D+[\mathrm{kNm} / \mathrm{m}]$
my $[\mathrm{kNm} / \mathrm{m}]$	$\mathrm{m} 2[\mathrm{kNm} / \mathrm{m}]$	$m x D-[\mathrm{kNm} / \mathrm{m}]$
mxy [ $\mathrm{kNm} / \mathrm{m}]$	am [ ${ }^{\circ}$ ]	Total
$\mathrm{vxz}[\mathrm{kN} / \mathrm{m}]$		my $+[\mathrm{kNm} / \mathrm{m}]$
vyz [kN/m]		myD- [kNm/m]
vEd [kN/m]		
	OK	Cancel

Select one of the Surface force components. Confirm with $\mathbf{O K}$, and the program shows the negative maximum value and its location as well.


After click on $\mathbf{O K}$, then the maximum positive value will be showed and its location will be marked.


The Color legend shows boundary values of each colour. Adjust number of colors and boundary values by dragging up or down the bottom edge of the palette.


Color legend
Find areas where the $\boldsymbol{n x}$ internal force exceed value of $\mathbf{- 1 0 0} \mathbf{k N} / \boldsymbol{m}$. The boundary values can be set by clicking on Color legend. In Color legend setup the values (next to the colors) can be edited. Click on the last value and change the default minimum maximum value (-291.975) to -100:


Press Enter to finish data entry and switch on Auto interpolate. This option will recalculate the inner boundary values depending on the number of boundary levels.

By clicking on $\mathbf{O K}$, the following will be displayed:


Areas with $\boldsymbol{n x}$ surface force exceeding $\mathbf{- 1 0 0} \mathbf{k N} / \mathbf{m}$ are hatched in blue.
Isolines After, let us have a look at the internal forces in Isolines Display mode. Click on arrow right to Isosurfaces 2D text and select Isolines from the list.

Isolines	$\checkmark$
Diagram	
Section line	
Filled section line diagram	
Isolines	
Isosurfaces 2D	
Isosurfaces 3D	
None	

After selecting Isolines the following will be displayed:


View internal forces of the supports. Select Rz component between Line support internal forces in the Result component combo box.

Result display parameters


Click on Result Display Parameters icon, and check the Lines checkbox in the Write values to panel and set the Display mode to Diagram:


Close the dialog window with $\mathbf{O K}$ and the values of vertical support forces will be displayed on the screen:

R. C. design The next step is to calculate the required reinforcement of the wall structure. Click on $\boldsymbol{R}$. $\boldsymbol{C}$. design tab:


Reinforcement parameters


Click on Reinforcement Parameters icon, and select all surface elements with All (*) button. Complete selection with $\mathbf{O K}$, and set the followings on Materials tab:


Close dialog window with $\mathbf{O K}$ and the $\boldsymbol{a x b}\left[\mathbf{m m}^{\mathbf{2}} / \mathbf{m}\right]$ diagram is displayed in Isosurfaces $\mathbf{2 D}$ view:


The required specific reinforcement in the $\boldsymbol{x}$ direction is the sum of $\boldsymbol{a x t}$ and $\boldsymbol{a x b}$ values.

## 5. SHELL MODEL

Objective
Determine the specific internal forces and the amount of reinforcement for the water reservoir shown below.


The thickness of the walls and the bottom slab is 250 mmm , the cross section of the ribs on the upper edges is $300 \times 600 \mathrm{~mm}$. The reservoir is made of concrete C25/30, the type of rebar is B500B. Use Eurocode 2 for design.

Start AxisVMX4 by double-clicking on AxisVMX4 icon in its installation folder, found in Start - Programs menu.

New

Options

Create a new model by clicking on New icon. In the dialogue window replace Model file name with 'reservoir', select Eurocode from Design codes and set Unit and formats to EU.



Replace each value under Cursor step to $\mathbf{0 . 2}$.


With these settings, the mouse cursor moves in $\mathbf{0 . 2} \boldsymbol{m}$ steps (geometric imperfection or editing error can be avoided while drawing the model).

Now, create the geometry using enhanced editing functions.

Define of geometry -

Select Elements tab to bring up Elements toolbar.

Elements


Draw objects directly


By clicking on Draw objects directly icon shows following window:


Domain

Material library import

Click on Domain icon，the following window shows up：

## Warning

No element material defined．
－Browse material library．．．


The following window shows after clicking on OK：

Material Library Import－Eurocode					$\square$	$\times$
Design code	Materials		C25／30	$\square$		
（t）CSA S6－06［Rev． 2010 ＾	S350GD＋Z275	$\wedge$	Type	Concrete		
¢ DIN（German）	C12／15			Isotropic		
©－Eurocode	C20／25		$\mathrm{E}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	31500		
©－Eurocode［A］	C25／30		$v$	0.20		
T－Eurocode［B］	C30／37		$\alpha_{T}\left[1 /{ }^{\circ} \mathrm{C}\right]$	1E－5		
¢－Eurocode［CZ］	C35／45		$\rho\left[\mathrm{kg} / \mathrm{m}^{3}\right]$	2500		
（T－Eurocode［D］	C45／55		$\mathrm{f}_{\mathrm{ck}}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$	25.00		
（T．Eurocode［FIN］	C50／60		$\gamma_{c}$	1.500		
（t）Eurocode［H］	C14 C16		$\alpha_{c c}$	1.00		
（ ${ }^{\text {a }}$ Eurocode［PL］	C18		$\phi_{t}$	2.00		
－T－Eurocode［RO］	C20					
（T）Eurocode［SK］	C22					
（T）Eurocode［UK］	C27					
（T－MSZ（Hungarian）	C30				OK	
ค⿴囗十．NBCC 1995	C35					
＜＞	C40	$\checkmark$			Cancel	

Select C25／30 concrete in Materials list and confirm with $\mathbf{O K}$ ．

Thickness

Complex slab


Views Change view to Front view（X－Z plane）：


Choose the global origin as the first point of the polygon．It is at the bottom left， where the horizontal and vertical brown lines（representing the global $\boldsymbol{X}$ and $\boldsymbol{Z}$ ax－ es）intersect．The blue cross（rotated $45^{\circ}$ ）shows the current origin of the actual coordinate system．


Nodes in relative coordinate system

To enter additional nodes, select the relative coordinate system input. Press $\boldsymbol{d}$ button on the left of the Coordinates window. If $\boldsymbol{d}$ button is down (pressed) it denotes relative coordinates and the coordinate texts are marked by $\boldsymbol{d}(\boldsymbol{d} \boldsymbol{X}, \boldsymbol{d} \boldsymbol{Y}, \boldsymbol{d} \boldsymbol{Z}, \ldots)$


Move the mouse cursor to the following locations and click once to enter each vertex: $\mathbf{1 1 . 0}$ [m] right and $\mathbf{0 . 2}$ down, down 0.4, right 1.0, up 3.6, left 12.0, down 3.0 (or by keyboard: x 11 z -0.2 [Enter] z-0.4 [Enter] x 1 [Enter] z 3.6 [Enter] x-12 [Enter] z-3 [Enter]).
Press Esc twice to quit the drawing function, when the polygon has been created.
The following will be displayed in the main window:


Mirror
4 A

Change view to Perspective


Specify the following values in the Perspective settings window:
H 30.0; V 320.0; P 0.0.
Click on $\mathbf{X}$ button at top right corner to close window.
Create the parallel wall on other side by mirroring the first one with respect to the centre of structure ( $\boldsymbol{Y}=4$ ). By clicking on the Mirror icon, the Selection bar is displayed:


Select the domain with $\boldsymbol{A l l}\left(^{*}\right)$ button, the color of the selected elements changes, become pink. Finally, finish selection with $\mathbf{O K}$.

Mirror	
Mirror	Nodes to connect
$\bigcirc$ Copy	NoneDouble selectedAll
- Multiple	
- Move	
- Detach	
Mirror local $x$-axis of line elements	Copy elements Copy loads Copy nodal masses Copy dimension symbols
With guidelinesWith DXF/PDF layerVisible layers only	
	OK Cancel

Select Multiple mirror type and All for Nodes to connect, then confirm with OK.
Define the mirror plane with two points, type in the following values using relative coordinates.

X	12	y	4	Z	0	<Enter>
X	1	y	0	Z	0	<Enter>,

Press Esc once to close the command.

The following will be displayed:


Zoom to fit Click on Zoom to fit icon for better view.

Move the cursor to the bottom right corner, find Numbering icon and click on it (it is the second one on the right), the next checkbox will be displayed:

| $\square$ Node |
| :--- | :--- |
| $\square$ Domain |
| $\square$ Material |
| $\square$ Thickness |
| $\square$ Reference |
| $\square$ Units |

Here numbering function can be turn on or off. Turn on the checkbox at Node, then the node numbers appear immediately next to the nodes.

Translate / Copy
To specify a slope for the watercourse, move the line between node $\mathbf{3}$ and $\mathbf{4}$ down by $0.2 \boldsymbol{m}$.

## Geometry Change tab to Geometry:

```
Geometry Elements Loads }|\mathrm{ Mesh | Static | Buckling Vibration Dynamic R. C. Design Steel design Timber design
```



Select the line between nodes $\mathbf{3}$ and $\mathbf{4}$ by a selection rectangle:


All the elements within the rectangle will be selected (node 3, 4 and the line between them). To move the line, move the cursor over the selected line, press and hold the left mouse button and drag the cursor down.


Select the Parallel move of line icon from the icon bar on the left and choose the first among the active icons:


Firstly, the translation vector should be specified, type in the following to define the exact distance:

$$
\begin{array}{ccccccc}
\mathrm{X} & 0 & \mathrm{y} & 0 & \mathrm{Z} & -0.2 & <\text { Enter }>
\end{array}
$$

Geometry check Click on Geometry check icon on the Geometry tab, the following window shows up:
Geometry check
Tolerance $[\mathrm{m}]=0.001$
$\square$ Selection of problematic nodes
$\square$ Selection of intersecting elements
$\square$ Select unattached nodes or lines
$\square$ List deleted nodes
Check domain contours
Tolerance [m] = 0.001
$\square$ Check all loads
Rebuilding of loads may cause loss of results.
OK Cancel

In the window, the maximum Tolerance (distance) for checking points can be set. Check the Select un$\boldsymbol{a t t a c h e d}$ nodes or lines checkbox and start the analysis with pressing $\mathbf{O K}$ button.

After the analysis, the following message report will be displayed:


Elements By clicking Elements tab types of the elements, their material properties, cross-sections and references can be defined:


Reference point


The local system of finite elements can be set by references. In this example a reference point is used to define the orientation of the local $\boldsymbol{Z}$ direction of the domains and a reference plane to define the inplane $\boldsymbol{X}$ and $\boldsymbol{Y}$ axes.
Click on Reference point icon then click the centre point of the line between node $\mathbf{5}$ and 11. To locate the centre point move the cursor along the line and check if the cursor shape changes from / (line) to $\mathbf{1} / 2$. Press Esc to exit from function.

Numbering Move the cursor over the Numbering icon on the Speed buttons toolbar. Turn on the Reference checkbox. Now, an $\boldsymbol{R} \mathbf{2}$ label appears beside the reference symbol.

Reference plane

To set the local system of domains create a reference plane. Click on Reference plane icon on the Elements tab. You need three points to define a plane.

Click on node 6, then click anywhere on the line between node $\mathbf{1}$ and $\mathbf{2}$, finally click on node $\mathbf{2}$.
The following will be displayed:


Press Esc to exit from function.

Domain Define a domain to create structural surface elements. Click Domain icon, then Selection palette appears. Click on the following lines between the given nodes to select domain contours:

$12-6$	$6-1$	$1-7$	$7-12$
$1-7$	$1-2$	$2-8$	$7-8$
$5-11$	$5-4$	$4-10$	$10-11$

Click OK on Selection palette, then Domains dialog window shows up:


Thickness Enter $\mathbf{2 5 0} \mathbf{~ m m}$ into the edit field of Thickness[mm].

Reference

Local systems

Domain


Set the Local x reference to $\boldsymbol{R 3}$ :

then close window with $\mathbf{O K}$.
A green contour can be seen along the domain boundary showing the shape of the domain. The colour depends on the element type, shell domains always have a green contour.

Turn on the display of the local systems of Domains by clicking on the Local systems speed button in the bottom right Speed buttons toolbar (fourth icon on the right).

Define the other wall elements. Click on Domain icon, then Selection palette appears and select lines between the following nodes:

$$
2-8 \quad 8-9 \quad 3-9 \quad 2-3
$$

then finish selection with $\mathbf{O K}$. Choose Shell element type and $\boldsymbol{R} \mathbf{3}$ for Local $\boldsymbol{x}$ reference and $\boldsymbol{R} \mathbf{2}$ for $\boldsymbol{L o}$ cal $\boldsymbol{z}$ reference, finally press $\mathbf{O K}$.



Repeat creating shell elements, activate again Domain function, then select lines between the given nodes:

3-9 3-4 4-10 9 - 10 ,
then press $\mathbf{O K}$, then set $\mathbf{2 5 0} \mathbf{~ m m}$ for Thickness, and leave references on Auto.


The following will be displayed:


Speed buttons
Line elements $\square$

Turn off Numbering of Nodes and Local systems using Speed buttons.
To define ribs on the upper edges, click on Line elements on the Elements tab. The Selection palette appears, click on the 4 edges and close the selection with $\mathbf{O K}$, then Line elements dialog window appears:

Cross-section editor
둡

Rectangular shape


To define the cross-section of the rib, click on Cross-section editor icon. The following window shows up:


To define a 300x600 mm rectangular shape click on Rectangular shape icon, and type in the right values for $\boldsymbol{b}$ and $\boldsymbol{h}$ :


Finishing the data input, press Place button to place the cross-section in the editor window. Click anywhere in the window. We get the next result:


The 1st and 2nd principal direction of the cross section indicated by the crossing dashed lines on the cross-section, marked with numbers 1 and 2 . The centre of gravity is marked with $G$. The other crosssection parameters are displayed within the property window. Click More parameters if you want to see all parameters calculated automatically by a finite element analysis of the shape.

Click $\mathbf{O K}$ to close Cross-section editor, in the dialog window change default name of cross-section if required. Click on $\mathbf{O K}$ again to confirm.


Set eccentricity to Bottom rib then finish settings with $\mathbf{O K}$. Rib centre lines are displayed in blue and the contour of the rib is shown in yellow.

## Restores the

 previous viewZoom to fit


Wireframe


Surface support

Move the cursor over a rib and wait for a tooltip displaying element properties:


Move cursor over the View mode icon on the left icon bar. A fly out toolbar appears, then select the third icon to choose Rendered view. In this view mode check the elements already defined.


Click Rotate view icon on the Zoom toolbar at the bottom left corner of the main window. Drag the model to rotate it. A special Rotation toolbar appears to control the rotation process. You can also hold Alt + mouse wheel and rotate the view anytime.

Restore previous view with icon between Zoom toolbar.

Click on Zoom to fit for better view.

Select Wireframe from the View mode fly out toolbar.


To define supports for the structure click on Surface support icon on Elements toolbar, then Selection palette appears. Click on the bottom two domains. Finish with $\mathbf{O K}$, then the following window shows up:


Change $\boldsymbol{R}_{\boldsymbol{x}}$ and $\boldsymbol{R}_{\boldsymbol{y}}$ to $\mathbf{1 E}+\mathbf{3}$, then click $\mathbf{O K}$. The following will be displayed in the main window:


Loads
To define loads click Loads tab:

```
Geometry \(\mid\) Elements Loads \(\mid\) Mesh \(\mid\) Static \(\mid\) Buckling \(\mid\) Vibration \(\mid\) Dynamic \(\mid\) R. C. Design \(\mid\) Steel design \(\mid\) Timber design
```



Load cases and load groups
II. -

To define load cases click Load cases and load groups icon on the Loads toolbar. The following window will be displayed:


Click on the selected load case ST1 and rename it to SELF WEIGHT, then click OK to close dialog.
Self weight
G
To define self weight, click on Self weight icon. On the Selection palette click on choose All (*) icon or press grey * on the keyboard. Click $\mathbf{O K}$ to close Selection palette. Dashed lines along the domain contours represent the self weight. Moving the cursor to a domain edge, a tooltip appears showing the weight of the specified domain:


Static load case


To create another load case, click again the Load cases and load groups icon and click on Static load case button in the Add new load case group box. Enter 'WATER' as the name of the new load case in the tree on the left. Click $\mathbf{O K}$ to close the dialog.

To define the water load, click on Fluid loads icon. On the Selection palette click choose All (*) icon or press grey * on the keyboard. Click $\mathbf{O K}$ to close the Selection palette. The following window will be displayed:


To define water level $\mathbf{3 0} \mathbf{~ m m}$ under the top edge of the reservoir change $\boldsymbol{Z 1}[\mathbf{m}]=\mathbf{3 . 0 0 0}$ to $\mathbf{2 . 7}$, and set the bottom pressure value $\boldsymbol{p}\left(\boldsymbol{Z}_{\mathbf{2}}\right)\left[\mathbf{k} \mathbf{N} / \boldsymbol{m}^{\mathbf{2}}\right]$ to $\mathbf{- 3 5}$ (pressure is in the negative local $\boldsymbol{z}$ direction) and click $\mathbf{O K}$. The following will be displayed:


Load To create load combinations, click on Load combinations icon. You get to the load combinations table combinations


New row To create new load combinations, click on New row icon. Leave the name on default Co.\#1 then select:


- (user defined combination). Then enter $\mathbf{1 . 3 5}$ into the column of case SELF WEIGHT and $\mathbf{1 . 0 0}$ into the column of WATER load case. Use Tab or Enter to jump to the next cell. Click $\mathbf{O K}$ to close the dialog.

Speed buttons Use the speed buttons: turn off Supports, Reference and Object contours in 3D on Graphic symbols tab.

Mesh To create finite element mesh change tab to Mesh.

Geometry $\mid$ Elements $\mid$ Loads Mesh $\mid$ Static |  | Buckling | Vibration | Dynamic | R. C. Design | Steel design |
| :--- | :--- | :--- | :--- | :--- | :--- | Timber design



Speed buttons
Domain meshing

Using speed button turn off Load display (the fifth icon on the right).
Click on Domain meshing icon. On Selection palette click Select all (*) icon or press grey * on the keyboard. Click on $\mathbf{O K}$ to close the Selection palette. Select rectangular mesh type (in centre) and set Average Mesh Element Size to $\mathbf{0 . 6 0} \mathbf{~ m}$.


Click on $\mathbf{O K}$ to close dialog. Meshing process is can be followed on the status bar:


After completing, the following will be displayed:


Green points at the centre of surface elements represent Centre points of the shells. Moving the mouse over a centre point, a hint appears after a while showing properties of the finite element.


Speed buttons Turn off Nodes, Surface centre and Domains on Graphic Symbols tab, then turn off also the Mesh Display.

With this last step, we have finished finite element modelling.

Static To run the static analysis, change tab to Static.												
Geometry Elements	Loads	Mesh	Static	Buckling\|	Vibration	Dynamic	R. C. Design	Steel design	Timber desig			
					$\checkmark$		$\checkmark$		$\checkmark$	$\checkmark$ - $=_{\text {max }}^{\text {max }}$		5

Linear static Click on Linear static analysis to start analysis.
analysis


The following dialog shows up giving feedback about the process of the analysis:


Messages, Statistics

Click on Messages and Statistics to see more information about the analysis:


The Estimated Memory Requirement shows the necessary amount of memory to run the analysis. If this value is higher than the available physical memory, then AxisVM uses the hard disk to swap memory blocks during the calculation. If the system of equations fits into the physical memory the calculation is considerably faster.

The following window shows up after analysis:


After click on $\mathbf{O K}$, then Static tab is activated showing displacement of the structure in $\boldsymbol{e z}$ direction in case SELF WEIGHT load and displayed in Isosurfaces 2D mode.

To see the result for the WATER load case, click on the dropdown button of the combo box displaying SELF WEIGHT and select WATER:


Select ey [mm] result component to display.
To hide the front wall (for better visibility) of the reservoir create a part. Click Parts icon on the icon bar on the left, then Parts dialog shows up:


Define a part containing all the elements but the front wall, click on New icon and specify the name as 1:


Change view to $\boldsymbol{X}-\mathbf{Z}$ plane!


Press and hold wheel of the mouse, to pan the view, so the right part of model is fully visible. Use the bottom slider if your mouse does not have a wheel button.
Use selection rectangle to unselect the wall on right hand side from the selection:


Click on $\mathbf{O K}$ on the Selection palette, then close Parts dialog window with $\mathbf{O K}$.

Restore the previous view

Min, max values 도max $I_{\text {min }}$

Restore the previous view with clicking the icon among Zoom toolbar - or activate Perspective view with Ctrl+4 keys. Defining the part, the front wall is not visible in the next view:


To find extreme values of horizontal displacements, click Min, max values icon. The following window shows up:

Model extremes	
Displacements	
eX [mm	fX [rad]
eV [mm]	fY [rad]
eZ [mm]	fZ [ rad]
eR [mm	fR [rad]
OK	Cancel

Select one of the deformation components: eV [mm]. Click on $\mathbf{O K}$ to show maximum negative value and its location.


Confirm with $\mathbf{O K}$, then result dialog jumps to the maximum positive value.


Close the window with $\mathbf{O K}$.
Select load combination Co.\#1 and eR resultant displacement.

Result display parameters


Click on Result display parameters icon, set Display shape to Deformed, Display mode to Diagram and Scale by to $\mathbf{2}$ :


Close window with $\mathbf{O K}$.

Hidden line removals

Rotate


Restore the previous view


Result display parameters


Color legend

Go to the bottom right of the screen, turn on the Mesh display speed button and at the icon bar on the left change the Display mode to Hidden line removal:

## 

Click on Rotate view icon in the Zoom toolbar at the bottom left corner of the main window. Drag the model to rotate and check the deformed shape.


Press Esc to exit.

Now, restore the view with pressing its icon among Zoom toolbar.

Click on Result display parameters icon: change Display shape to Undeformed, Display mode to Isosurfaces 2D and restore Scale by to 1.

Use speed button to turn off Mesh display and change result component to Surface Internal Forces $\boldsymbol{m x} \boldsymbol{D}+$.

The Colour legend shows boundary values of each colour. Adjust number of boundary values by dragging the bottom edge of this palette, set it to 22:


Change result component to Surface Internal Forces - myD-.

Section lines

To specify sections for displaying myD-diagram, click on Section Lines icon on the icon bar on the left side. The following window will be displayed:


To define a new section plane, click on New section plane button in the dialog. The following message box will be displayed to enter name of the section:


Type in $\mathbf{1}$ as the name of the section plane and confirm with $\mathbf{O K}$, then close the Section Lines window as well with $\mathbf{O K}$.


Numbering

Speed buttons

Views

Change view to $\boldsymbol{X}$ - $\mathbf{Z}$ plane - or press $\mathbf{C t r l + 1}$ keys!


Specify a section plane in the middle of the reservoir.
The section plane can be defined by two points when side, front or top view is active. In front view, click on the middle point of the rib and enter the second point somewhere under the first point in the vertical plane.
Finishing the data input, the Section Lines dialog shows up. Close it with $\mathbf{O K}$.
Change view to $\boldsymbol{Y} \mathbf{- Z}$ plane - or press $\boldsymbol{C t r l} \mathbf{+} \mathbf{3}$ keys!


Change Display mode to Section line:

Click on Numbering speed button and turn on Write Values to Lines.
The result is the following:


## Turn off Section Line Display mode.

Change to Perspective view.


Change Display mode to Isosurfaces 2D! Select Surface Support Internal Forces - Rz which shows vertical reactions of the surface support and the following will be displayed:

R. C. design

To analyse the required reinforcement of the reservoir, change tab to $\boldsymbol{R}$. C. design:


Reinforcement parameters


Click on Reinforcement parameters icon then select All (*) and confirm with OK, then the following window will be displayed:


Set Exposition classes to XC2 for Top and Bottom surface on Materials tab.
Set Primary direction of reinforcement as $\boldsymbol{x}$ for Top and Bottom reinforcement on Reinforcement tab. Check Apply minimum cover checkbox:


By closing the parameters setting dialog window with $\mathbf{O K}$, the results of calculated bottom reinforcement in local $\boldsymbol{x}$ direction - $\boldsymbol{a x b}\left[\mathbf{m m}^{\mathbf{2}} / \mathbf{m}\right]$ can be seen on the screen. Change Display mode to Isosurfaces 2D.

Click on Numbering speed button and turn off Write Values to Surfaces and Lines. The following will be displayed:


Check also ayb, axt, ayt reinforcement values!
Check crack width in case of load combination Co.\#1 using actual reinforcement $\boldsymbol{\varnothing 1 2 / 1 5 0} \mathbf{~ m m}$ in both $\boldsymbol{x}$ and $\boldsymbol{y}$ direction at top and bottom. Let us define actual reinforcement.

Actual reinforcement

Selection


Click on Actual reinforcement icon, the following window shows up:


Specify the domains for which reinforcement should be assigned. Click on Selection function at the bottom of the window. Click on $\boldsymbol{A l l}\left({ }^{*}\right)$ on Selection palette and close it with $\mathbf{O K}$.

The following can be seen after the selection:


Set $\boldsymbol{x}$ direction for Primary direction of reinforcement on top and bottom surface on Parameters tab and check the Apply minimum cover checkbox.

Now, click on Reinforcement tab:


Set reinforcement rebar on right hand side and assign it to each four reinforcement layers on left hand side.

Set diameter to $\mathbf{1 2}$ for $\varnothing$ [ $\mathbf{m m}$ ] = and Spacing [mm] to 150. Check Calculate rebar positions checkbox then select $\boldsymbol{x}$ Direction - Top reinforcement in top left box and click on Add button.

The following will be displayed:


Specify the other reinforcement layers by using the above method.
Finally, the following will be the result:


As we can see, the rebar position is calculated automatically taking into account concrete cover, the position of each reinforcement layers and the diameters of the applied rebars.

Close window with $\mathbf{O K}$ button, the specified reinforcement is displayed on the domains:


The thick brown lines and their titles indicates the given actual reinforcement. If only one direction of reinforcement is visible on the screen, then open Display options. On Label tab switch off According to the displayed result component function.


Select Cracking - wk(b) result component which is showing crack width at bottom surface of the domains (outer face of reservoir, remark: the location of 'bottom' depends on the position of the local coordinate system).


All domains are hatched in blue what denotes that there are no cracks on outer face of domains.
Check crack widths on the inner face of the reservoir!
Select Cracking - wk(t) result component which is showing crack width at top surface of the domains. The following will be displayed:


Here you can see cracks on some inner corners of the domains.

Beam reinforcement design


To design reinforcement of the ribs, click on Beam reinforcement design icon, then click on the longer, farthermost rib on top of the side wall and finally click on $\mathbf{O K}$. The following warning message shows up:

## Warning

Reinforcement amounts must be calculated form ULS combinations, while cracking analysis requires SLS combinations.
Therefore to perform a full check of reinforced beams it is recommended to select an apropriate envelope or critical combination from the list.
$\square$ Do not display this message

## Rib internal forces

! Selected rib elements are connected to shells with an eccentricity.
In such cases rib design moments will be calculated as Mdesign $=M+N$ * exc.
reinforcement parameters

Beam By closing warning message, the Beam reinforcement parameters window shows up.
Set the parameters as shown in the next figures:


Specify rectangular shape for the rib on Cross-section tab, and select S3 structural class
Use XC2 Environment class on all four sides of the rib and check Apply minimum cover.
Set B500B material rebar for longitudinal rebars and stirrups. Use rebar $\boldsymbol{\varnothing 8} \mathbf{m m}$ for stirrup and $\boldsymbol{\varnothing 1 6}$ mm for main bars.

For crack width control check Increase reinforcement according to limiting crack width checkbox on Parameters tab:


After click on $\mathbf{O K}$, then the following window shows up displaying the envelope internal force diagram (in case of load combination Co.\#1) and the calculated amount of reinforcement (main bars and link).


By clicking on Calculated beam reinforcement tab, the required reinforcement, crack width considering the calculated reinforcement and bending resistance, shear capacity, etc... can be seen.


On Actual beam reinforcement tab, the calculated reinforcement can be assigned to the rib or can be specified according to the user's intention. This feature is not presented now, similar example can be found in chapter named 'Beam model'.

Click on $\mathbf{O K}$ to close window.


[^0]:    © Beplace cross-sections

