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INTRODUCTION 
The goal of the footfall analysis is to determine and check the accelerations due to human induced vibrations, which may 

result in the decrease of the comfort or may have influence on sensitive instruments or even can decrease the serviceability 

of the building. 

The main purpose of this guide is to give a better insight into the built-in procedures to help the understanding. The 

approaches, we introduce here are based on the works:  „A Design Guide for Footfall Induced Vibration of Structures”, [1] 

and "Design of Floors for Vibration: A New Approach”, [2]. 

During the set up of the modell it is important to take into account the fact that the structures are stiffer for dynamical loads. 

The setting of the supports, connections between the structural members, edge hinges must reflect stiffer behaviour for 

dynamical loads than what is assumed for statical loads.  

THEORY AND BACKGROUND 

VIBRATION CHARACTERISTICS 
The response of a system for forced vibration consists of two parts: a transient part and a steady-state part. The response for 

footfalls can have two different characteristics.  If the structure is „stiff” (the first, dominant, vertical directional mode’s 

frequency is larger then four times the fundamental frequency of walking) then the steady-state solution is negligible beside 

the transient solution because between two steps the vibrations decay due to the large stiffness and damping. In this case 

the excitation can be modelled as a series of impacts on the structure. An example can be found in Figure 1(a). We would like 

to emphasise here that in this case we neglect the superposition of the consecutive footfalls, which is acceptable if we 

assume the decay of the vibration between two steps. The transient vibration is a free vibrational response of the system, 

which relates to given initial conditions, so the frequency content of the response consists of the eigenfrequencies of the 

system, so evidently the forcing frequencies do not appear in this solution. 

 

 (a) (b) 

On the other hand, if the structure is „softer”, so there exists an eigenfrequency, which is smaller than four times the 

fundamental frequency of walking, than resonance may appear if the force is not orthogonal to the eigenshape. Resonance 

appears if the fundamental frequency or one of the overtones (integer multiple of the fundamental frequency) is equal to 

one of the structure’s eigenfrequencies. In this situation the transient solution is negligible beside the steady-state solution. 

The amplitude of the acceleration becomes constant after a while, see Figure 2(b). It is important to note that as one can see 

time is needed for the evolution of the steady-state amplitude, so maximal accelerations can only evolve in unfavourable 

situations, when the structure undergoes long resonant forcing.  

  

Figure 1. Possible acceleration response characteristics: series of transient vibrations due to impacts on a „stiffer” structure (a), 

steady-state solution due to continuous excitation force on a „softer” structure (b).  



 

CALCULATION OF THE RESPONSE FACTOR 

INTRODUCTION OF PROCEDURE CCIP-016 

In the case of transient vibration the function of the vertical velocity obtained from 𝑁𝑡𝑟 eigenshapes, where the indice of 

the analysed node is r, while indice of the forced node is e:  

 
𝑣𝑤,𝑒,𝑟,𝑡𝑟(𝑡) = ∑ 𝜇𝑒,𝑚𝜇𝑟,𝑚

𝐼𝑒𝑓𝑓,𝑚

𝑚𝑚
𝑠𝑖𝑛(2𝜋𝑓𝑚𝑡)

𝑁𝑡𝑟
𝑚=1 𝑒𝑥𝑝(−2𝜋𝜁𝑓𝑚𝑡),  where (1) 

• 𝑁𝑡𝑟: is the analysed number of eigenshapes, 

• 𝑓𝑚: mth eigenfrequency, 

• 𝜁: critical damping ratio, see [1] Table A2, 

• 𝜇𝑒,𝑚: the vertical directional displacement of the forced node (indice: e), on the mth mode,  

• 𝜇𝑟,𝑚: the vertical directional displacement of the analysed node (indice: r), on the mth mode,  

• 𝐼𝑒𝑓𝑓,𝑚: impulse load of a footfall, see [1] Equation (4.10), 

• 𝑚𝑚: modal mass of the mth eigenshape, which is equal to 1, if the shapes is normalised to the mass, 

• 𝑡 : time. 

The averaging velocity can be obtained in the following form: 

 𝑣𝑤,𝑟𝑚𝑠,𝑒,𝑟,𝑡𝑟 = √
1

𝑇
∫ 𝑣𝑤,𝑒,𝑟,𝑡𝑟(𝑡)

2𝑑𝑡
𝑇

0
, where (2) 

𝑇: period of one step (=
1

𝑓𝑝
).  This yields the response factor : 

 

𝑅𝑒,𝑟,𝑡𝑟 =

{
 

 
𝑣𝑤,𝑟𝑚𝑠,𝑒,𝑟,𝑡𝑟

0.005
𝑚

𝑠2

2𝜋𝑓1

, if 𝑓1 ≤ 8𝐻𝑧

𝑣𝑤,𝑟𝑚𝑠,𝑒,𝑟,𝑡𝑟

0.0001
𝑚

𝑠

, if 𝑓1 > 8𝐻𝑧
, where 

(3) 

𝑓1 is the fundamental frequency of the structure. This frequency is one of the eigenfrequency (𝑓𝑚), which has the largest 

coefficient in the summation, see above Equation (1).  Equation (3) contains the effect of the frequency sensitivity, which 

describes the fact that the sensitivity of the human body depends on the frequency of the response signal of the structure 

not just the maximal acceleration of it. 

The real and imaginary part of the acceleration in the steady-state solution, relating to hth overtone and mth eigenshape:  

 
𝑎𝑒,𝑟,𝑟𝑒𝑎𝑙,ℎ,𝑚 = (

ℎ∗𝑓𝑝

𝑓𝑚
)
2

∗
𝐹ℎ𝜇𝑒,𝑚𝜇𝑟,𝑚𝜚

𝑚𝑚
∗

𝐴ℎ,𝑚

𝐴ℎ,𝑚
2 +𝐵ℎ,𝑚

2 , 

𝑎𝑒,𝑟,𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦,ℎ,𝑚 = (
ℎ∗𝑓𝑝

𝑓𝑚
)
2

∗
𝐹ℎ𝜇𝑒,𝑚𝜇𝑟,𝑚𝜚

𝑚𝑚
∗

𝐵ℎ,𝑚

𝐴ℎ,𝑚
2 +𝐵ℎ,𝑚

2 , ahol 

(4) 

• ℎ:  number of harmonic, 

• 𝑓𝑚: mth eigenfrequency, 

• 𝐹ℎ: the Fourier coefficient, which relates to the hth harmonic, 

• 𝜇𝑒,𝑚: the vertical directional displacement of the forced node (indice: e), on the mth eigenshape, 

• 𝜇𝑟,𝑚: the vertical directional displacement of the analysed node (indice: r), on the mth eigenshape, 

• 𝜚: resonance build-up factor, 𝜚 = 1 − exp(−2𝜋𝜁𝑁), where N is the number of footsteps, 

• 𝑚𝑚: modal mass of the mth eigenshape, which is equal to 1, if the shapes is normalised to the mass, 

• 𝐴ℎ,𝑚 = 1 − (
ℎ∗𝑓𝑝

𝑓𝑚
)
2

, 𝐵ℎ,𝑚 = 2𝜁
ℎ∗𝑓𝑝

𝑓𝑚
:  parameters. 

  



The acceleration component, which relates to the hth harmonic can be expressed int he following way: 

 

𝑎𝑒,𝑟,ℎ = √(∑ 𝑎𝑒,𝑟,𝑟𝑒𝑎𝑙,ℎ,𝑚
𝑁𝑠𝑡
𝑚=1 )

2
+ (∑ 𝑎𝑒,𝑟,𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦,ℎ,𝑚

𝑁𝑠𝑡
𝑚=1 )

2
,  

(5) 

where Nst  is the number of eigenshapes, taken into account. The response factor of the hth harmonic: 

 

𝑅𝑒,𝑟,𝑠𝑡,ℎ

{
  
 

  
 

𝑎𝑒,𝑟,ℎ

0.0141
𝑚

𝑠2.5

√ℎ∗𝑓𝑝

, ℎ𝑎 ℎ ∗ 𝑓𝑝 ≤ 4𝐻𝑧

𝑎𝑒,𝑟,ℎ

0.0071
𝑚

𝑠2

, ℎ𝑎 4𝐻𝑧 < ℎ ∗ 𝑓𝑝 ≤ 8𝐻𝑧

𝑎𝑒,𝑟,ℎ

0.000282
𝑚

𝑠
𝜋ℎ∗𝑓𝑝

, ℎ𝑎 ℎ ∗ 𝑓𝑝 > 8𝐻𝑧

, 

  (6) 

which expression contains the effect of freqency sensitivity, like the one above. The response factor taking into account all 

the harmonics: 𝑅𝑒,𝑟,𝑠𝑡 = √∑ 𝑅𝑒,𝑟,𝑠𝑡,ℎ
24

ℎ=1 , which is an SRSS summation of the four harmonics.  

The response factor of the analysed node, r (e: the indice of the forced node): 

 𝑅𝑟 = max(max𝑒 𝑅𝑒,𝑟,𝑡𝑟 , max𝑒 𝑅𝑒,𝑟,𝑠𝑡), (7) 

so we maximise the responses with respect to the indice e, furthermore we calculate these two maximums , one for the 

transient and one for the steady state solution, and associate the larger one to the node r.    

INTRODUCTION OF PROCEDURE SCI P354 

In the case of transient vibration the function of the vertical acceleration obtained from 𝑁𝑡𝑟 eigenshapes, where the indice 

of the analysed node is r, while indice of the forced node is e:  

 𝑎𝑤,𝑒,𝑟,𝑡𝑟(𝑡) = ∑ 2𝜋𝑓𝑛√1 − 𝜁
2𝜇𝑒,𝑛𝜇𝑟,𝑛

𝐹𝐼

𝑀𝑛
sin(2𝜋𝑓𝑛√1 − 𝜁

2𝑡)
𝑁𝑡𝑟
𝑛=1 exp(−𝜁2𝜋𝑓𝑛𝑡)𝑊𝑛, where 

(8) 

• 𝑁𝑡𝑟: is the analysed number of eigenshapes, 

• 𝑓𝑛 : nth eigenfrequency, 

• 𝜁: critical damping ratio, see [2] Table 4.1., 

• 𝜇𝑒,𝑛: the vertical directional displacement of the forced node (indice: e), on the nth mode,  

• 𝜇𝑟,𝑛: the vertical directional displacement of the analysed node (indice: r), on the nth mode,  

• 𝐹𝐼 : impulse load of a footfall, 

• 𝑀𝑛: modal mass of the nth eigenshape, which is equal to 1, if the shapes is normalised to the mass, 

• 𝑡 : time, 

• 𝑊𝑛: frequency-dependent weighting function, which relates to the nth mode, see [2]. 

The averaging acceleration obtained from the time-dependent acceleration, see Equation (8): 

 
𝑎𝑤,𝑟𝑚𝑠,𝑒,𝑟,𝑡𝑟 = √

1

𝑇
∫ 𝑎𝑤,𝑒,𝑟,𝑡𝑟(𝑡)

2𝑑𝑡
𝑇

0
,  where 

(9)  

𝑇: period of one step (=
1

𝑓𝑝
).  

The acceleration function in steady-state solution with 𝐻 harmonics and 𝑁𝑠𝑡 eigenshapes: 

 𝑎𝑤,𝑒,𝑟,𝑠𝑡(𝑡) = ∑ ∑ 𝜇𝑒,𝑛𝜇𝑟,𝑛
𝐹ℎ

𝑀𝑛

𝐻
ℎ=1 𝐷𝑛,ℎsin(2𝜋ℎ𝑓𝑝𝑡 + 𝜙ℎ + 𝜙𝑛,ℎ)

𝑁𝑠𝑡
𝑛=1 𝑊ℎ, where 

(10) 

• 𝑁𝑠𝑡: is the analysed number of eigenshapes, 

• 𝑓𝑝: pathing, fundamental frequency of walking, 

• 𝜇𝑒,𝑛: the vertical directional displacement of the forced node (indice: e), on the nth mode,  

• 𝜇𝑟,𝑛: the vertical directional displacement of the analysed node (indice: r), on the nth mode,  

• 𝐹ℎ: the Fourier coefficient, which relates to the hth harmonic, see [2], 



• 𝑀𝑛: modal mass of the nth eigenshape, which is equal to 1, if the shapes is normalised to the mass, 

• 𝑡 : time, 

• 𝐷𝑛,ℎ: response factor (nth shape, hth harmonic), see [2], 

• 𝜙𝑛 , 𝜙𝑛,ℎ: phase angles (n-edik alak, h-adik harmonikus), see [2], 

• 𝑊𝑛: frequency-dependent weighting function, which relates to the nth mode, see [2]. 

During the analysis of the steady-state solution (in both procedures) those eigenshapes are taken into account, which have 

eigenfrequency smaller then the fundamental frequency times the number of harmonics (𝐻)+2Hz (cut-off limit). Above this 

limit there is no significant increment in the acceleration. First we summarise the acceleration components with respect to 

the harmonics and after that the acceleration amplitude can be obtained by an SRSS summation with respect to the shapes. 

And according to this one can obtain the vertical acceleration of the node r, when the node e is excited, see Equation (11). 

 
𝑎𝑤,𝑟𝑚𝑠,𝑒,𝑟,𝑠𝑡 =

1

√2
√∑ (∑ 𝜇𝑒,𝑛𝜇𝑟,𝑛

𝐹ℎ

𝑀𝑛

𝐻
ℎ=1 𝐷𝑛,ℎ𝑊ℎ)

2
𝑁
𝑛=1 . 

(11) 

In the case of resonant vibration time is needed to achieve the maximal acceleration 

value, see again Figure 1(b), due to this fact we can decrease the steady state 

solutions:  

𝑎𝑤,𝑟𝑚𝑠,𝑒,𝑟,𝑠𝑡 = 𝑎𝑤,𝑟𝑚𝑠,𝑒,𝑟,𝑠𝑡 ∗ 𝜚, where 

𝜚 resonance build-up factor:  𝜚 = 1 − exp (−
2𝜋𝜁𝐿𝑝𝑓𝑝

𝑣
), where 

• 𝐿𝑝 : length of the walking path, which can be set to the length of a 

critical corridor, or we can safely approximate it with a significant 

horizontal dimension of the building. 

• 𝑣: velocity of walking, see [2], Equation (16). 

According to this the response acceleration, which relates to the analysed node r:  

 𝑎𝑤,𝑟𝑚𝑠,𝑟 = max(max𝑒 𝑎𝑤,𝑟𝑚𝑠,𝑒,𝑟,𝑡𝑟 , max𝑒 𝑎𝑤,𝑟𝑚𝑠,𝑒,𝑟,𝑠𝑡), (12) 

which yields the dimensionless response factor of the analysed node r: 

 𝑅𝑟 =
𝑎𝑤,𝑟𝑚𝑠,𝑟

0.005
𝑚

𝑠2

. (13) 

  

Figure 2. Resonance build-up factor as a 

function of the length of the walking path, 

𝜁 = 1%, 𝑓𝑝 = 2𝐻𝑧. 



Figure 3.  Active 

Footfall analysis 

button. 

THE IMPLEMENTATIONS OF THE PROCEDURES IN AXISVM 14 
 If vibration results relate to the modell, then the Footfall analysis button becomes active, see Figure 3. In 

Figure 4. the Footfall analysis windows can be found. The procedure will begin after clicking on „Ok”, if 

the modell contains surface elements and among them there exists at least one element, at which the 

angle between its normal and the direction of gravity is smaller then  70°. The procedure considers a 

surface element a floor element if the angle between the normal and the gravity is less then or equal to 10°, if the angle is 

10° − 70°, then the surface assumed to be stair, to which different frequency limits, Fourier coefficients relate to (only in SCI 

P354 procedure). On nodes, which relate to walls or rods the program does not apply forcing and does not analyse the 

accelerations of these nodes. 

 

Figure 4. Vibration response factor window. 

The vibration response factor procedure is a computationally expensive calculation, so the program offers some 

simplification in the analysis, which can significantly shorten the runtime. 

Modal shapes to use: 

• All modal shapes for the load cases/combinations: if the user set this radiobutton, then all the eigenshapes, 

which relate to the load case or combination are taken into account. So the number of eigenmodes in the transient 

analysis, 𝑁𝑡𝑟, see above is equal to the number of modes, which relate the load case/combination. While for steady-

state analysis all the eigenmodes are taken into account till the cut off limit (𝑁𝑠𝑡), where the cut-off limit is equal to 

the fundamental frequency times the number of harmonics (𝐻)+2Hz. Above this limit the eigenshapes are not 

dangerous from the resonance point of view. 

• Shapes activated in the table of modal mass factors: the user can switch off modes, which presumably have no 

effect on the footfall analysis. 

• Below  a frequency limit: in this setting the user can define a cut-off frequency, above which the software does 

not take into account the eigenshapes. 

 



 If the largest calculated eigenfrequency is below the cut-off limit (see 

above) or the user switched of an eigenshape below the cut-off limit or the 

frequency limit is below the cut-off limit, then the name of the load case or 

combination becomes red, see Figure 5. 

 

 

 

 

Excitation method: 

• Full (any node to any node): in this option the analysed node of a floor or stair gets excited by arbitrary nodes, 

which relate to floor or stair (the software does not analyse or force nodes which relate to walls). 

• Excitation at the extremes of the modal shapes: in this case the excited nodes (e) are limited in such a way that 

only at the two extremes (min and max) of the modes are excited, see for example Figure 6: 

  

 

• Excitation at the node where the response is analysed: in this option the forced and the analysed node is the 

same, so 𝑒 = 𝑟. This option is usually appropriate if the user is interested in the global maximum of the vibration 

response spectrum and the goal is to prove the structure’s reliability globally. However, it is suggested to check this 

result with methods decribed above. 

• Gerjesztés legfeljebb a szomszédos szintekig: if the model consits of at least three storeys, then this checkbox 

becomes active. If the user switch it on, then the storey of the analysed node and the storey of the excited one must 

be the same or must be adjacent. Different load case is not handled.   

The damping ratio can be chosen according to the works [1] and [2]. The description of the footfall parameters can be found 

above. 

Pace frequency: 

During the set up of the pace frequency the user determines the lower and the upper boundary of the analysed frequency 

range. In the analysis the software  evaluate a list, in which discrete frequencies appear, which cause resonance in the system. 

If the obtained frequencies are smaller than 20, then by interval halving further elements are added to the list, if it is larger, 

then elements are deleted from the list. If the maximal difference between two discrete frequency is larger than  0.1 Hz, then 

further interval halving is applied. All in all at the calculation is carried out for at least 20 discrete pace frequencies.   

Figure 5. Warning on the vibration results. 

Figure 6.  Excitation at the extremes of the modal shapes, excited nodes. 



EXAMPLES 

ANALYSIS OF AN L-SHAPED PLANAR PLATE 
Geometric parameters, material properties,boundary conditions 

The geometric parameters of the analysed structure is illustrated in Figure 7. The thickness of the plate is constant:  20 cm. 

 

Figure 7.  Geometric values of the analysed problem. 

The material of the model relates to C25/30 (EC), Young’s modulus:  𝐸 = 3150𝑘𝑁/𝑐𝑚2. The boundary conditions are point-

like hinges and line-like hinges, see Figure 7. The number of the nodes: 1870, the analysed number of modes: 10. 

Results: 

Figures 8., 9., 10. illustrates the results of the problem with same design method, but with different excitation methods with 

the notation of the running time. As one can observe the maximal values are the same, but the charateristics of the envelope 

functions are differs from each other. It is easy to admit that the full excitation is always above (yields larger accelerations) 

the other excitation methods. 

 

Figure 8.  Full excitation, CCIP-016 design method, running time: 20 sec. 



 

Figure 9.  Excitation at the extremes of modal shapes, CCIP-016 design method, running time: 2 sec. 

 

 

 

Figure 10.  Excitation at the nodes where the response is analysed, CCIP-016 design method, running time: <1 sec. 

  



ANALYSIS OF A MULTI-STOREY BUILDING 
Geometric parameters, material properties, boundary conditions 

The geometric parameters of the structure is illustrated in Figure 11. and 12. The thickness of the plates is constant: 20cm. 

The cross section of the columns are square with size of 40x40 cm. 

 

Figure 11. Multi-storey building, in top view. 

 

Figure 12. Multi-storey building, in side view. 

The material parameters of the model relate to concrete, C16/20 (EC), Young’s modulus: 𝐸 = 2860𝑘𝑁/𝑐𝑚2. The columns 

have clamped end. The number of the nodes: 6647, the number of the examined, z-directional modeshapes: 50.  

 



Results: 

 

Figure 13. Slab of the first storey, full exctiation, CCIP-016 design method, without analysing the storey of the nodes, running 

time: 1335 sec. 

 

Figure 14. Slab of the first storey, excitation at the extremes of modal shapes, CCIP-016 design method, without analysing 

the storey of the nodes, running time: 57 sec. 

 

Figure 15. Slab of the first storey, excitation at the nodes where the response is analysed, CCIP-016 design method, without 

analysing the storey of the nodes, running time: 2 sec. 



Figure 16.  Result of the maximal value 

function. 

The results are shown in Figures 13, 14, 15. Only the vibration response factors of the first storey are illustrated with different 

excitation methods. Figure 13. illustrates the solution of the „exact”, full excitation, while in Figure 14.  the results for method 

excitation at the extremes of modal shapes is plotted and in Figure 15. the results for method excitation at the nodes where 

the response is analysed can be seen. As one can see all the three methods show similar maximal value, but the 

characteristics of the functions are different. If we take adventage from the storey and only nodes on the same or adjacent 

storeys can force the analysed one, then the running time can be reduced to 1087 s. 

The analysis of the maximal value of the response factor the number of the node 

on which the maximal response showed up, the maximal value, the forced node, 

which relates to this most unfavourable case and the critical frequency. In the 

current case the critical fundamental frequency is f= 2.70 𝐻𝑧. The analysis of the 

eigenshapes, eigenfrequencies showed that the 30. shape’s eigenfrequency: 

𝑓0,30 = 10.80 𝐻𝑧 and the eigenshape is illustrated in FIgure 17. It is easy to admit 

that this shape resonates with the third overtune of the fundamental frequency, 

as four times the fundamental frequency is equal to this eigenfrequency. 

 

 

 

 

Figure 17.  30. eigenshape (𝒇𝟎,𝟑𝟎 = 𝟏𝟎. 𝟖𝟎 𝑯𝒛), first storey’s z-directional displacement component. 

 

 

 

 



LIMIT VALUES OF THE RESPONSE FACTOR 
The limit values of the vibration response factor at different standards can be found in Table 1. and 2.  

Limit values in BS 6472, [3]: 

Place Time 
Continuous vibration 

16h day 8h night 

Impulsive excitation 

with up to 3 

occurences 

Critical working 

areas(e.g.: hospital 

operating theatres) 

Day 1 1 

Night 1 1 

Residental 
Day 2 to 4 60 to 90 

Night 1.4 20 

Office 
Day 4 128 

Night 4 128 

Workshops 
Day 8 128 

Night 8 128 

Table 1.  Vibration response factor limit values, BS 6472, [3]. 

Limit values in SCI, [4]: 

Place 
Continuous 

vibration 

Office 8 

Shopping mall 4 [4] 

Dealing floor 4 

Stairs-light use (offices) 32 [5] 

Stairs-heavy use (e.g. 

public buildings, stadia) 
24 [5] 

Table 2. Vibration response factor limit values, SCI, [4]. 
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