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User’s guide to domains with custom stiffness matrix in AxisVM 

 This guide is entitled to give a deeper insight to the theoretical background behind the hood of AxisVM, helping the 

users in the process of arriving to a state of better understanding. The chapters cover the most popular plate theories and 

worked out examples.

The document doesn’t lead to full enlightenment in the topic and the theory covered here should only be regarded 

as a brief introduction to plate theory and in fact is just a compendious summary of the outstanding lecture note of Carlos A. 

Felippa [2]. We mention here, that some of the figures praise his work, as it is noted in the captions. For further information 

about plate theory and a broad literature review the reader is directed to the original source of this paper:  

https://www.colorado.edu/engineering/CAS/courses.d/AFEM.d/AFEM.Ch20.d/AFEM.Ch20.pdf 

1  Theoretical background 

The brief theoretical background is laid down in this section, providing the foundation for the case when one needs 

to develop expressions without literature suggestion. The most important statements are printed with bold letters, so if one is 

only interested in the practical application of custom stiffness matrices in AxisVM, they can run through this section without 

missing the point.

1.1  Field Equations of Flat Shells

In this chapter we will study plates in a plane stress state, also called a membrane or lamina state in the literature. 

This state occurs if the external loads act on the plate midsurface as sketched in the following Figure.

Figure  1: A flat shell structure in: (a) plane stress, (b) bending state. (Carlos A. Felippa) 

Under these conditions the distribution of stresses and strains across the thickness may be viewed as uniform, and 

the 3D problem can easily be reduced to 2D. If the structure shows linear elastic behavior under the action of applied loads, 

than we have effectively reduced the problem to that of two-dimensional elasticity.

1.1.1  Kinematic Equations 

Consider a 3D body having an arbitrary shape in the x-y plane, and bounded by surfaces � = ���� and � = �������, so

for every point of the 3D body ���� ≥ � ≥ �������. For the sake of simplicity, from now on we will use the notation �� = ���� and�� = �������. We define the functions 
 = 
(�, �, �), � = �(�, �, �) and � = �(�, �, �) to describe the displacement of a point in

the direction of the axes �, � and � respectively. Our intention is to approximate this displacement field by selecting kinematic

variables on a reference surface, defined by the points � = 0. That is called the midsurface of the plate. If we assume small

displacements, and that plane sections remain plane after deformation, we can say that the displacement of a point �(��, �� , ��)
can be described by a rigid body motion of the point (��, ��, 0)  and two rotations ��(��, ��)  and ��(��, ��) . The

aforementioned rotations are considered to be positive according to Figure 1.
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Figure  2: Positive rotations. (Carlos A. Felippa)  

According to the assumptions so far, the approximated displacements of a general plate particle �(�, �, �) are given

by


(�, �, 
) ≅ 
�(�, �) + ���(�, �)�(�, �, 
) ≅ ��(�, �) − ���(�, �)�(�, �, 
) ≅ ��(�, �) (1)

 where zero index here and from now on refer to values being measured on the midsurface. Through the derivations 

we also simplify our notation by generally writing � instead of �(��, ��, . . . ��), when the arguments are trivial. The small

engineering strains associated with these equations are obtained from well known elasticity equations:

 � = !"!� = !"#!� + � !$%!� =  �& + �'� � = !(!� = !(#!� − � !$&!� =  �% + �'�)�� = !"!� + !(!� = !"#!� + !(#!� + �(!$%!� − !$&!� ) = )�&% + �'��)�* = !"!* + !+!� = �� + !+#!�)�* = !(!* + !+!� = −�� + !+#!�

(2)

 The listed nonzero strains are usually grouped to having in-plane and out-of-plane strains. For the in-plane strains, 

the following notation is popular:

, = -  � �)��. = /  �& �%)�&%
0 + � - '�'�'��. = ,� + �1 (3)

1.1.2  Physical and Equilibrium Equations 

Each of the introduced nonzero strains induce a corresponding work conjugate stress pair, namely 2� , 2� , 3�� , 3�* and3�* . Continuing the previous thoughts and further assuming that the plate is isotropic and homogeneous, the stresses and

strains are related by Hooke’s law for plane stress at every material point. In matrix form this relationship is

4 = - 2�2�3��. = 5�678 91 ; 0; 1 00 0 �67�
< , = =�, = =�,� + �=�1 (4)

 for the in-plane stresses and

> = ?3�*3�*@ = AB 00 BC ?)�*)�*@ = =DE (5)

for the out-of-plane stresses, where B stands for the shear modulus. We formulate equations (4) and (5) with a

notation similar to the so-called Kelvin-Voight notation, which kind of standardizes mapping the notation of stress and strain 
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related parameters. The only difference is that we interchanged the notations for 3�* and 3�* and finally applied the following

definitions:

(2�, 2� , 2*, 3�* , 3�*, 3��) ≡ (2�, 2�, 2G, 2H, 2I, 2J) (6)

and therefore we have

-2�2�3J. = KL�� L�� L�JL�� L�� L�JL�J L�J LJJM - � � J. (7)

 and

?2H2I@ = NLHH LHILHI LIIO ? H I@ (8)

 It is natural that the corresponding work-conjugate strain pairs of the stresses listed in (6) inherit the same indexing 

scheme.

Stress resultants can be calculated by integrating the elementary stresses and stress couples with respect to � ,

according to an arbitrary sign convention. The used sign conventions for moments and shear forces are depicted in Figure 2. 

The sign conventions for in-plane forces are inherited from the definitions of positive stresses and therefore are 

straightforward. With this selection the stress resultants are:

P = / Q�Q�Q��0 = R 4�S�T U� = (�� − ��)=�,� + �� (��� − ���)=�1 = V,� + W1
X = / Y�Y�Y��0 = R �4�S�T U� = �� (��� − ���)=�,� + �G (��G − ��G)=�1 = W,� + Z1
= = [L�L�\ = R >�S]^�T U� = (�� − ��)=DE = _E

(9)

The equations of (9) can be encompassed in the following form:

?PX@ = AV WW ZC ?,�1 @ = = _E (10)

 or

-PX=. = K V WW Z _ M -,�1E . (11)

In equation (11) the sub-matrices V and Z characterizes the membrane and flexural stiffness of a plate element, while

sub-matrix W represents a coupling between flexural and membrane effects. That is, for example if W is not empty, and the

plate undergoes in plane deformation only (1 = a), moments will be present and the same coupling applies vice versa. It is

clear to see, that W is a null matrix if and only if |�������| = |����|. In other words we can say, that for a shell of constant

thickness, W represents the eccentric effects. Sub matrix _ contains the stiffness terms against transverse shearing. 
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Figure  3: Sign convention for bending moments.

To derive interior equilibrium equations we consider differential midsurface elements U� × U� aligned with the �, �
axes as illustrated in Figure 4.

 Without the technical details of derivation, the equilibrium equations are given by

de� : !g&!� + !g&%!� + h� = 0de� : !g%&!� + !g%!� + h� = 0de* : !i&!� + !i%!� + h* = 0dY� : !j%&!� + !j%!� − L� = 0dY� : !j&!� + !j&%!� − L� = 0dY* : Y�� − Y�� = 0
(12)
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1.2  Shear correction 

For a homogeneous plate and using an equilibrium argument similar to Euler-Bernoulli beams, the stresses )�* and)�* can be shown to have a parabolic distribution over the thickness. This is inconsistent with the postulated kinematic relations,

which says that the shear strains, therefore the shear stresses are constant through the thickness. Thus, the shear stiffness 

values must be corrected. Since the originally three dimensional body is now represented with a single surface, all the points 

along a material section are represented by the point of intersection of the material section and the reference plane � = 0. If

the stress values of that one point don’t fit a realistic distribution, it can lead to an over- or underestimation of the strain energy 

density at that point.

Here the two stage calculation of the shear correction factor for a pate under discussion is illustrated for 3�* at a fixed

point on the midsurface (��, ��). First let assume, that it shows a parabolic distribution through the thickness by having 3�*(�) =3�*(�� , �� , �) in the following form: 

3�*(�) = k� + k�� + k��� (13)

 Since basic equilibrium considerations dictate the transverse shear stress distribution to be symmetric with respect 

to the midsurface of the plate, to vanish on the bottom and top surfaces of the plate and to have a peak value on the 

midsurface. Also, the shear stress function integrated through the thickness must be equivalent to the shear force L� .

Altogether, the assumed function has to satisfy the following criteria:

3�*(��) = 03�*(��) = 0!l&m(*)!* |*n(�So�T)/� = 0R 3�*�S�T (�)U� = L�
(14)

 Doing the math one can arrive to a form of

3�*(�) = L�(q� + q�� + q���) (15)

 with

q� = (�G r��G − ��Gs − �� r��� − ���s(�� + ��) + ����(�� − ��))6�q� = −q�(�� + ��)q� = q�����
(16)

The second step is to find a correction t� to the shear stiffness terms so, that the shear strain density calculated from

the constant distribution uv  and from the parabolic one u�  coalesce. Utilizing that )�*(�) = 3�*(�)/B  in the case of the

parabolic distribution and )�* = 3�*/(t�B) for the constant one at every material point, we can write 

2u� = R 3�*�S�T (�))�*(�)U� = R l&m(*)8x�S�T U�2uv = R 3�*�S�T )�*U� = R l&m8y&x�S�T U� (17)

From the condition uv = u�, we can arrive to the value of the shear correction factor for the � direction to be t� =5/6. The same derivation can be carried out for the � direction, producing a value of t� = 5/6. With this modification, equation

(5) takes the form of

> = ?3�*3�*@ = Nt�B 00 t�BO ?)�*)�*@ = =D∗E (18)

 Consequently we have

[L�L�\ = (�� − ��)=D∗E = _∗E (19)

 and the ABD matrix of a Mindlin-Reissner plate of a material point on the midsurface takes it’s final form as
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-PX=. = K V WW Z _∗M -,�1E . (20)

 And in more detail

⎝
⎜⎜⎜
⎜⎛

Q�Q�Q��Y�Y�Y��L�L� ⎠
⎟⎟⎟
⎟⎞ =

⎣⎢
⎢⎢
⎢⎢
⎢⎡K��� ��� ��J��� ��� ��J��J ��J �JJM K��� ��� ��J��� ��� ��J��J ��J �JJM
K��� ��� ��J��� ��� ��J��J ��J �JJM K��� ��� ��J��� ��� ��J��J ��J �JJM

N�HH∗ �HI∗�HI∗ �II∗ O⎦⎥
⎥⎥
⎥⎥
⎥⎤

⎝
⎜⎜⎜
⎜⎛

 �& �%)�&%'�'�'��)�*)�* ⎠
⎟⎟⎟
⎟⎞

(21)

 where for a homogeneous plate of constant thickness

��� = (�� − ��)L������ = �� (��� − ���)L������ = �G (��G − ��G)L���
(22)

and ��� ∗ are the shear corrected stiffness values. The form and the meaning of the parameters V��, W��, Z�� and _��∗
of the material equations for a plate section in equation (21) is exactly the same that is shown in AxisVM, illustrated in 

Figure 3.

Figure  4: The ABD matrix in AxisVM, with the corrected shear stiffnesses. 

 We note that in the case of non-homogeneous plates, the essential steps of the calculation of shear correction 

factors are the same, but the integration over the plate thickness can be significantly more laborious. 

1.3  Kirchhoff-Love Shells 

The theory is also known as the "classical plate theory" or "theory of thin plates", as it accounts for no shear 

deformation, and is applicable when the thickness of the plate is not so thin that the lateral deflection of the plate becomes 

comparable to it.

The kinematics of the Kirchhoff-Love plate is based on the extensions of Euler-Bernoulli beam theory to the case of 

biaxial bending. Next to the previously stated assumptions, this means that material normals to the midsurface remain 

normal to the deformed reference surface, see Figure 23. This assumption relates the rotations to the slopes:

�� = !+!� �� = − !+!� (23)



Custom Stiffness Matrix – Guide   9  

Figure  5: The normality assumption of a Kirchhoff-Love plate. (Carlos A. Felippa) 

If we substitute the relations of equations (23) into equation (2), the following is obtained

 � = !"#!� − � !8+!�8 =  �& + �'� � = !(#!� − � !8+!�8 =  �% + �'�)�� = !"#!� + !(#!� − 2� !8+!�!� = )�&% + 2�'��)�* = − !+!� + !+!� = 0)�* = − !+!� + !+!� = 0
(24)

 Remarks on the Kirchhoff-Love theory: It is important to note, that some inconsistencies of Kirchhoff-Love 

theory emerge on taking a closer look at equations (24). For example, the transverse shear strains are zero, which immediately 

implies 3�* = 3�* = 0 and consequently there are no shear forces, so L� = L� = 0. But these forces appear necessarily from

the equilibrium equations (12). Similarly,  * = 0 says that the plate is in a state of plane strain, whereas a plane stress (2* = 0)

is closer to the physical reality. For a homogeneous isotropic plate, plane strain and plain stress coalesce if and only if the 

Poisson’s ratio is zero. These inconsistencies have been the topic of hundreds of learned papers that fill applied mechanics 

journals but nobody reads. Furthermore, since the theory predicts zero transverse shear stress, for it to be an acceptable 

approximation, these stresses should be significantly smaller than the maximum in-plane stresses. This is the case if the 

thickness of the plate is thin (but not very thin). If these conditions are not met, one should move to the Mindlin-Reissner 

model, which accounts for transverse shear energy to first order.

However, the theory has some practical benefits. In the absence of shear forces one doesn’t need to determine the 

entries of sub-matrix _ in equations (11) and (10). The necessary values for the shear forces are only dictated by the equilibrium

equations and their calculation is shifted to the post-processing stage.

As a final note, if we consider the case, when |��| = |��|, rearrange the moment-equilibrium equations around � and� in equations (12) for L� and L�, substitute the moment-curvature relations from equation (10) and use the definitions for

curvatures from equation (3), we come to the famous biharmonic equation, first derived by Lagrange in 1813:

��� !�+!�� + 2(��� + 2�JJ) !�+!�8!�8 + ��� !�+!�� = k* (25)

or with the notation of � = ��� + 2�JJ, 

��� !�+!�� + 2� !�+!�8!�8 + ��� !�+!�� = k* (26)

 whereas the same equation in the famous book of Timoschenko [3], with different notations of the rigidities,

�� !�+!�� + 2� !�+!�8!�8 + �� !�+!�� = k* (27)

with � = �� + 2��� 

1.4  Mindlin-Reissner Shells 
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The theory is also known as the "first order shear deformation theory" or "theory of thin and moderately thick plates", 

as it accounts for shear deformation to the first order, and is applicable when the thickness of the plate is thin or moderately 

thick. The core difference in the formulation when compared to the Kirchhoff-Love theory is that the normality condition is 

relaxed, thus the rotations �� and �� and therefore the strain state are not defined by the deflection function � only. In this

case the strain-displacement equations under in equations (2) apply. As a consequence, the shear strains )�* and )�* are not

zero, nor the shear stresses 3�* and 3�* . This lead to the fact, that the values of sub-matrix _ in equation (11) in addition

with the proper values of the shear correction factors should also be properly determined. It is also worth mentioning, 

that the Mindlin-Reissner theory can account for thin plates too. If the shell is thin, it’s shear rigidity is very high, in fact 

infinitely high as Kirchhoff’s assumptions suggest. Therefore in that case, if the user has no better idea, the corrected 

shear rigidity in both directions (_��∗  and _��∗ ) can be set to infinity, so producing the same result, as if the calculations

were carried out on the basis of the Kirchoff-Love theory. If the shell is not thin, the calculation of shear correction 

factors in both directions is inevitable.
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2  Examples 

 In AxisVM it is assumed that the usage of a domain with a custom ABD matrix is motivated by the the users 

being able to provide the necessary stiffness values by themselves or from the literature. 

2.1  Example 1 : Bending of a corrugated sheet 

This example is worked out on the basis of the suggestions to the bending rigidities of corrugated sheets in [3, 

p.~367].

Figure  6: Parameters of a corrugated sheet. (Timoshenko) 

Let say we want our domain to have the stiffness of a corrugated sheet shown in Figure 5. Assume that we have a 

plate model, so there is no need for membrane effects. In this case we don’t have to determine the values ��� , and the

corresponding entries on the AxisVM panel will be inactive. Let � and � be the elastic constants of the material of the sheet, ℎ
its thickness,

� = � ��� ��� (28)

the form of the corrugation and � the length of the arc of one-half a wave. According to the suggestions for the plate

rigidities:

��� = �D 5����(�678)��� = � ��� ≅ 0� = 2�JJ = D� 5����(�o7)
(29)

 in which approximately

� = ¡(1 + �8¢8H�8 )  = ¢8�� [1 − �.¤��o�.I( ¥8¦)8] (30)

For example, if we take � = 21000¨Q/©ª�, ; = 0.3, ¡ = 50©ª, ℎ = 1©ª and � = 5©ª, matrix � in equation (21) and

in Figure 3 equals to

Z = ¬1876.76 0. 0.0. 51195.65 0.0. 0. 689.69° (31)

Unfortunately, the source does not provide suggestions for the shear stiffness values ���. However, an acceptable
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estimation would be to have (for this example)�HH∗ = �II∗ = IJ Bℎ, where B = 5�(�o7) is the shear modulus. With this setting, the 

stiffness matrix of the plate element under discussion would be

?Z_@ =
⎣⎢⎢
⎢⎢⎡
1876.76 0. 0. 0. 0.0. 51195.65 0. 0. 0.0. 0. 656.86 0. 0.0. 0. 0. 6730.76 0.0. 0. 0. 0. 6730.76⎦⎥⎥

⎥⎥⎤ (32)

2.2  Example 2 : Bending of a voided plate 

Figure  7: Parameters of a voided plate. 

Investigate a voided plate and let the voids be parallel with the local � coordinate axis of the domain. Let � and � be

the elastic constants of the material. According to the suggestions of Basu and Dawson [1], the rigidities of a voided plate with 

geometrical parameters illustrated in Figure 6 are:

��� = 5�¥�8�(�678)��� = ���(1 + �±�
6�¥+ )��� = ;����JJ = x�¥�8��HH = �5�¥�+8(�o�(�/+)(�¥/�±)�)�II = B�¢ℎ(1 + �¢/ℎ)/(�¢�/�+)

(33)

with G being the shear modulus. With the setting of � = 2860¨Q/©ª�, ; = 0.2, � = 10©ª, �+ = 5©ª, �¢ = 4©ª, ℎ =15©ª, and assuming a shear correction factor of 5/6 we have the following approximation: 

?Z_@ =
⎣⎢⎢
⎢⎢⎡
1340625 268125 0. 0. 0.268125 1759570 0. 0. 0.0. 0. 536250 0. 0.0. 0. 0. 1203 0.0. 0. 0. 0. 9434⎦⎥⎥

⎥⎥⎤ (34)
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